

Relativistic QRPA with exact coupling to the continuum

Ioannis Daoutidis

IAA, Université Libre Bruxelles

June 9, 2011

Contents of the talk

- Density Functional Theory in relativistic static phenomena
- Method to describe nuclear collective phenomena (RPA)
- Exact treatment of the continuum
- Results in spherical nuclei and comparison with experiment
- Conclusions

Overview Method Results

Mean Field Dynamical system

Density Functional Theory

$$E[\hat{\rho}] = \langle \Psi | H | \Psi \rangle \qquad \text{exact!}$$

density matrix $\rho(\mathbf{r}, \mathbf{r}') = \sum_{i=1}^{\mathbf{A}} |\phi_i(\mathbf{r})\rangle \langle \phi_i(\mathbf{r}')|$
Mean Field
 $\hat{h} = \frac{\delta E}{\delta \hat{\rho}}$
Eigenfunctions: Interaction:
 $\hat{h} | \phi_i \rangle = \varepsilon_i | \phi_i \rangle$
 $V = \frac{\delta^2 E}{\delta \hat{\rho}^2}$

Overview Method Results

Mean Field Dynamical system

Density Functional Theory

$$E[\hat{\rho}] = \langle \Psi | H | \Psi \rangle \qquad \text{exact!}$$

density matrix $\rho(\mathbf{r}, \mathbf{r}') = \sum_{i=1}^{\mathbf{A}} |\phi_i(\mathbf{r})\rangle \langle \phi_i(\mathbf{r}')|$
Mean Field
 $\hat{h} = \frac{\delta E}{\delta \hat{\rho}}$
Eigenfunctions: Interaction:
 $\hat{h} | \phi_i \rangle = \varepsilon_i | \phi_i \rangle$
 $V = \frac{\delta^2 E}{\delta \hat{\rho}^2}$

• Extensions: Pairing correlation (BCS)

Mean Field Dynamical system

Relativistic DFT

Nucleons are coupled by exchange of mesons

Mean Field Dynamical system

Relativistic DFT

Nucleons are coupled by exchange of mesons

Dirac equation: $[\alpha \cdot p + \beta(m + S(\mathbf{r})) + \mathbf{V}(\mathbf{r})] \psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r})$

Overview Method Results

Mean Field Dynamical system

Relativistic Point Coupling

Linear terms

 $\alpha_S, \alpha_V, \alpha_{TV}$

Mean Field Dynamical system

Relativistic Point Coupling

Linear terms $\alpha_S, \alpha_V, \alpha_{TV}$ + density dependent couplings $\beta_S, \gamma_S, \gamma_V$

Mean Field Dynamical system

Relativistic Point Coupling

Linear terms + density dependent couplings + gradient terms

 $\begin{array}{l} \alpha_S, \alpha_V, \alpha_{TV} \\ \beta_S, \gamma_S, \gamma_V \\ \delta_S, \delta_V, \delta_{TV} \end{array}$

Mean Field Dynamical system

Relativistic Point Coupling

Linear terms + density dependent couplings + gradient terms $\begin{array}{l} \alpha_S, \alpha_V, \alpha_{TV} \\ \beta_S, \gamma_S, \gamma_V \\ \delta_S, \delta_V, \delta_{TV} \end{array}$

Mean Field Dynamical system

Relativistic Point Coupling

Linear terms + density dependent couplings + gradient terms

 $\alpha_S, \alpha_V, \alpha_{TV} \\ \beta_S, \gamma_S, \gamma_V \\ \delta_S, \delta_V, \delta_{TV}$

PCF1:Buervenich et al. Phys. Rev. C65, 044308 (2002). DDPC1:Niksic et al. Phys. Rev. C78,034318 (2008). Overview Method Mean Field Results Dynamical system Summary

 $\sqrt{\text{Ground state properties}}$ (binding energies, nuclear radii, etc.) X <u>Collective excitations</u> (surface oscillations, Giant Multipole Resonances) Overview Method Mean Field Results Dynamical system Summary

 $\sqrt{\frac{\text{Ground state properties}}{(\text{binding energies, nuclear radii, etc.})}}$ X <u>Collective excitations</u> (surface oscillations, Giant Multipole Resonances)

How can we explain reactions that lead to collective excitations from individual motion?

$$\sigma = (2L+1)\pi^2(\hbar c)^2 E^{2L-1} S(E)$$

Overview Method Mean Field Results Dynamical system Summary

 $\sqrt{\frac{\text{Ground state properties}}{(\text{binding energies, nuclear radii, etc.})}}$ X <u>Collective excitations</u> (surface oscillations, Giant Multipole Resonances)

How can we explain reactions that lead to collective excitations from individual motion?

 $\sigma = (2L+1)\pi^{2}(\hbar c)^{2}E^{2L-1}S(E)$ Linear Response Theory $S(E) = -\frac{1}{\pi}Im \left[F_{ext}R(E)F_{ext}\right] \qquad F_{ext} = \text{external field}$

Mean Field Dynamical system

Linear Response Theory

Bethe-Salpeter equation:

 $R(E) = R^0(E) + R^0(E)V_{ph}R(E)$

Mean Field Dynamical system

Linear Response Theory

Mean Field Dynamical system

Linear Response Theory

Overview Method Results

Mean Field Dynamical system

Free response function

$$R^{0}(E) = \sum_{h} \langle h | G(E + \varepsilon_{h}) | h \rangle + b.g.$$

Mean Field Dynamical system

Free response function

$$R^{0}(E) = \sum_{h} \langle h | G(E + \varepsilon_{h}) | h \rangle + b.g.$$

• Spectral representation (Discrete RPA)

$$G(\mathbf{r}, \mathbf{r}'; \mathbf{E}) = \sum_{p}^{< E_{max}} \frac{|p\rangle_r \langle p|_{r'}}{E - (\varepsilon_p - \varepsilon_h) + i\eta} + \sum_{a}^{< E_{max}^a} \frac{|a\rangle_r \langle a|_{r'}}{E - (\varepsilon_a - \varepsilon_h) + i\eta}$$

Mean Field Dynamical system

Free response function

$$R^{0}(E) = \sum_{h} \langle h | G(E + \varepsilon_{h}) | h \rangle + b.g.$$

• Spectral representation (Discrete RPA)

$$G(\mathbf{r}, \mathbf{r}'; \mathbf{E}) = \sum_{p}^{< E_{max}} \frac{|p\rangle_r \langle p|_{r'}}{E - (\varepsilon_p - \varepsilon_h) + i\eta} + \sum_{a}^{< E_{max}^a} \frac{|a\rangle_r \langle a|_{r'}}{E - (\varepsilon_a - \varepsilon_h) + i\eta}$$

• Smearing parameter η is needed to produce a width.

Mean Field Dynamical system

Free response function

$$R^{0}(E) = \sum_{h} \langle h | G(E + \varepsilon_{h}) | h \rangle + b.g.$$

• Spectral representation (Discrete RPA)

$$\begin{split} G(\mathbf{r}, \mathbf{r}'; \mathbf{E}) &= \sum_{p}^{< E_{max}} \frac{|p\rangle_r \langle p|_{r'}}{E - (\varepsilon_p - \varepsilon_h) + i\eta} \\ &+ \sum_{a}^{< E_{max}^a} \frac{|a\rangle_r \langle a|_{r'}}{E - (\varepsilon_a - \varepsilon_h) + i\eta} \end{split}$$

- Smearing parameter η is needed to produce a width.
- Truncation of the space involves additional parameters and sets limitations.

Mean Field Dynamical system

Free response function

$$R^{0}(E) = \sum_{h} \langle h | G(E + \varepsilon_{h}) | h \rangle + b.g.$$

• Spectral representation (Discrete RPA)

$$\begin{split} G(\mathbf{r}, \mathbf{r}'; \mathbf{E}) &= \sum_{p}^{< E_{max}} \frac{|p\rangle_r \langle p|_{r'}}{E - (\varepsilon_p - \varepsilon_h) + i\eta} \\ &+ \sum_{a}^{< E_{max}^a} \frac{|a\rangle_r \langle a|_{r'}}{E - (\varepsilon_a - \varepsilon_h) + i\eta} \end{split}$$

- Smearing parameter η is needed to produce a width.
- Truncation of the space involves additional parameters and sets limitations.
- Large amount of terms contributing in R^0 (>2000).

Mean Field Dynamical system

Free response function

$$R^{0}(E) = \sum_{h} \langle h | G(E + \varepsilon_{h}) | h \rangle + b.g.$$

• Non spectral representation (Continuum RPA)

$$\begin{split} G(\mathbf{r},\mathbf{r}';\mathbf{E}) &= \sum_{\kappa} \left\{ \begin{array}{cc} |w_{\kappa}(\mathbf{r})\rangle \langle \, \mathbf{u}_{\kappa}^{*}(\mathbf{r}')| & \mathbf{r} > \mathbf{f}' \\ |u_{\kappa}(\mathbf{r})\rangle \langle \, \mathbf{w}_{\kappa}^{*}(\mathbf{r}')| & \mathbf{r} < \mathbf{f}' \end{array} \right. \\ |u\rangle &= r \binom{j_{l}(kr)}{\frac{\kappa}{|\kappa|} \frac{E-V-S}{k} j_{\bar{l}}(kr)} \quad |w\rangle = r \binom{h_{l}^{(1)}(kr)}{\frac{\kappa}{|\kappa|} \frac{ikr}{E+2m} h_{l}^{(1)}(kr)} \end{split}$$

Mean Field Dynamical system

Free response function

$$R^{0}(E) = \sum_{h} \langle h | G(E + \varepsilon_{h}) | h \rangle + b.g.$$

• Non spectral representation (Continuum RPA)

$$\begin{split} G(\mathbf{r}, \mathbf{r}'; \mathbf{E}) &= \sum_{\kappa} \left\{ \begin{array}{cc} |w_{\kappa}(\mathbf{r})\rangle \langle \mathbf{u}_{k}^{*}(\mathbf{r}')| & \mathbf{r} > \mathbf{r}' \\ |u_{\kappa}(\mathbf{r})\rangle \langle \mathbf{w}_{\kappa}^{*}(\mathbf{r}')| & \mathbf{r} < \mathbf{r}' \end{array} \right. \\ |u\rangle &= r \binom{j_{l}(kr)}{\frac{\kappa}{|\kappa|} \frac{E-V-S}{k} j_{\bar{l}}(kr)} \quad |w\rangle = r \binom{h_{l}^{(1)}(kr)}{\frac{\kappa}{|\kappa|} \frac{ikr}{E+2m} h_{l}^{(1)}(kr)} \end{split}$$

• Small amount of terms contributing in R^0 (<50)

Mean Field Dynamical system

Free response function

$$R^{0}(E) = \sum_{h} \langle h | G(E + \varepsilon_{h}) | h \rangle + b.g.$$

• Non spectral representation (Continuum RPA)

$$\begin{split} G(\mathbf{r}, \mathbf{r}'; \mathbf{E}) &= \sum_{\kappa} \left\{ \begin{array}{cc} |w_{\kappa}(\mathbf{r})\rangle \langle \mathbf{u}_{\kappa}^{*}(\mathbf{r}')| & \mathbf{r} > \mathbf{r}' \\ |u_{\kappa}(\mathbf{r})\rangle \langle \mathbf{w}_{\kappa}^{*}(\mathbf{r}')| & \mathbf{r} < \mathbf{r}' \end{array} \right. \\ |u\rangle &= r \binom{j_{l}(kr)}{\frac{\kappa}{|\kappa|} \frac{E-V-S}{k} j_{\overline{l}}(kr)} \quad |w\rangle = r \binom{h_{l}^{(1)}(kr)}{\frac{\kappa}{|\kappa|} \frac{ikr}{E+2m} h_{l}^{(1)}(kr)} \end{split}$$

- Small amount of terms contributing in R^0 (<50)
- Antiparticle-hole pairs are included effectively.

Mean Field Dynamical system

Free response function

$$R^{0}(E) = \sum_{h} \langle h | G(E + \varepsilon_{h}) | h \rangle + b.g.$$

• Non spectral representation (Continuum RPA)

$$\begin{split} G(\mathbf{r},\mathbf{r}';\mathbf{E}) &= \sum_{\kappa} \left\{ \begin{array}{cc} |w_{\kappa}(\mathbf{r})\rangle \langle \, \mathbf{u}_{\kappa}^{*}(\mathbf{r}')| & \mathbf{r} > \mathbf{r}' \\ |u_{\kappa}(\mathbf{r})\rangle \langle \, \mathbf{w}_{\kappa}^{*}(\mathbf{r}')| & \mathbf{r} < \mathbf{r}' \end{array} \right. \\ |u\rangle &= r \binom{j_{l}(kr)}{\frac{\kappa}{|\kappa|} \frac{E-V-S}{k} j_{\bar{l}}(kr)} & |w\rangle = r \binom{h_{l}^{(1)}(kr)}{\frac{\kappa}{|\kappa|} \frac{ikr}{E+2m} h_{l}^{(1)}(kr)} \end{split}$$

• Small amount of terms contributing in R^0 (<50)

- Antiparticle-hole pairs are included effectively.
- Resonance width is reproduced without smearing parameter (escape width Γ[↑])

Isoscalar Monopole Resonance Isovector Dipole Resonance Pygmy Dipole Resonance

Contents of the talk

- Density Functional Theory in relativistic static phenomena,
- Method to describe nuclear collective phenomena (RPA),
- Sector State St
- Results in spherical nuclei and comparison with experiment,
- 5 Conclusions.

Overview Method Results

Summary

Isoscalar Monopole Resonance Isovector Dipole Resonance Pygmy Dipole Resonance

Isoscalar Monopole Resonance

	CRPA	DRPA	Exp.
$ar{E}$ [MeV]	14.40	14.17	13.96±0.2
Г [MeV]	0.95		2.88 ± 0.2
	CRPA	DRPA	TRK
$m_1 \ [10^5 MeV fm^4]$	5.448	5.446	5.453

Ioannis Daoutidis

Continuum RPA

Isoscalar Monopole Resonance Isovector Dipole Resonance Pygmy Dipole Resonance

Isovector Dipole Resonance

Overview Method Results

Summary

Isoscalar Monopole Resonance Isovector Dipole Resonance Pygmy Dipole Resonance

Isovector Dipole Resonance

5-10 times faster numerical calculations!

Isoscalar Monopole Resonance Isovector Dipole Resonance Pygmy Dipole Resonance

Isovector Dipole Resonance

Coupling to more complex configurations (spreading width):

$$G(E) \to G(\omega + i\Gamma), \qquad \Gamma = 0$$

Overview
Method
Results
Summary

Isoscalar Monopole Resonance Isovector Dipole Resonance Pygmy Dipole Resonance

Isovector Dipole Resonance

Coupling to more complex configurations (spreading width):

 $G(E) \to G(\omega + i\Gamma), \qquad \Gamma = constant$

Ioannis Daoutidis

Continuum RPA

Isoscalar Monopole Resonance Isovector Dipole Resonance Pygmy Dipole Resonance

Isovector Dipole Resonance

Coupling to more complex configurations (spreading width):

Ioannis Daoutidis

Continuum RPA

Overview
Method
Results
Summary

Isoscalar Monopole Resonance Isovector Dipole Resonance Pygmy Dipole Resonance

Isovector Dipole Resonance

Coupling to more complex configurations (spreading width):

Exp.: Lepretre et. al. NPA 219,39 (1974)

Isoscalar Monopole Resonance Isovector Dipole Resonance Pygmy Dipole Resonance

Isovector Dipole Resonance

Isoscalar Monopole Resonance Isovector Dipole Resonance Pygmy Dipole Resonance

Isovector Dipole Resonance

Performance of different point-coupling parameterizations

		DD-PC1	PC-F1	Expt. [MeV]
⁷⁰ Zn	E_0	17.50	16.70	17.25 ± 0.08
	\bar{E}	16.00	15.86	15.68 ± 0.02
94 Zr	E_0	16.60	15.60	16.67 ± 0.07
	\bar{E}	15.90	15.58	16.00 ± 0.01
$^{124}\mathrm{Sn}$	E_0	15.40	14.40	14.67 ± 0.08
	\bar{E}	14.99	14.70	14.34 ± 0.02
$^{130}\mathrm{Te}$	E_0	15.30	14.60	14.53 ± 0.13
	\bar{E}	14.96	14.66	14.27 ± 0.01
¹³⁸ Ba	E_0	15.20	14.40	$\textbf{15.29} \pm \textbf{0.15}$
	\bar{E}	14.89	14.55	14.64 ± 0.01
$^{144}\mathrm{Sm}$	E_0	15.10	14.50	15.37 ± 0.13
	\bar{E}	15.39	14.58	14.77 ± 0.02
²⁰⁸ Pb	E_0	13.60	12.80	13.50 ± 0.19
	\bar{E}	14.40	14.03	$\textbf{13.96} \pm \textbf{0.20}$

Ioannis Daoutidis	Continuum RPA
-------------------	---------------

Overview Method Results

Isoscalar Monopole Resonance Isovector Dipole Resonance Pygmy Dipole Resonance

Evolution of transition densities

 \rightarrow play video...

Overview Method

Results

Summary

Isoscalar Monopole Resonance Isovector Dipole Resonance Pygmy Dipole Resonance

Pygmy Dipole Resonance

I. Daoutidis and S. Goriely, in Prep. Experiment: Toft et. al. PRC81, 64311 (2010) and PRC83, 44320 (2011)

Overview Method Results

Summary

Isoscalar Monopole Resonance Isovector Dipole Resonance Pygmy Dipole Resonance

Pygmy Dipole Resonance

I. Daoutidis and P. Ring PRC 83, 044303 (2011)

- Relativistic DFT plus QRPA allows to calculate excitation strength in a fully-self consistent way
- Continuum QRPA calculations are now possible. They appear to be important for :
 - the study of soft modes, sensitive to basis trancation.
 - quantitive improvement of the collective properties
 - determination of the escape width of the resonances
 - considerably reducing the numerical effort

- Relativistic DFT plus QRPA allows to calculate excitation strength in a fully-self consistent way
- Continuum QRPA calculations are now possible. They appear to be important for :
 - the study of soft modes, sensitive to basis trancation.
 - quantitive improvement of the collective properties
 - determination of the escape width of the resonances
 - considerably reducing the numerical effort
- Gamow-Teller resonances for astrophysical purposes (beta-decay rates, r-process path)
- Apply Relativistic Hartree Bogoliubov theory to treat pairing correlations at the cases where BCS fails (drip lines, halo nuclei)
- Extend to include phonon coupling and deformed nuclei

Collaborations:

Peter Ring [Munich] Stephane Goriely [Brussels] Daniel Pena Arteaga [Orsay] George Lalazissis [Thessaloniki] Elena Litvinova [GSI] Hiroaki Utsunomiya [Kobe]

Thank you

Overview	
Results	
Summary	

Quasiparticle RPA in the contunuum

Pairing Correlations: BCS

J. Daoutidis and P. Ring PRC 83 (2011) Non relativistically: K. Hagino and H. Sagawa, Nucl. Phys. A695, 82 (2001). S. Kamerdzhiev et. al. Phys. Rev. C58, 172 (1998).