

On the impact of pairing fluctuation on nuclear spectra

J. Luis Egido

in collaboration with Tomás R. Rodriguez and Nuria López-Vaquero

Advances in Nuclear Many Body Theory, June 7th 2010 On the ocassion of the 70th Birthday of Peter Ring, Primosten

1.- Theory

- A.- Mean Field based approaches
 - The Hartree-Fock-Bogoliubov approach and the symmetry breaking mechanism.
 - Symmetry Conserving mean field theory.
 - **B.-** Symmetry conserving configuration mixing approaches
 - The generation of configurations in the Generator Coordinate Method:
 - -- The β - γ coordinates (shape fluctuations)
 - -- The β - Δ_{π} - Δ_{ν} coordinates (shape and pairing fluctuations)

Outline of the talk (2)

2.- Applications

- A.- The ⁵⁴Cr nucleus. (Ingredients: VAP-PN, AXIAL-AMP and β coordinate)
- B.- The ²⁴Mg nucleus . (Ingredients: VAP-PN, TRIAXIAL-AMP and β-γ coordinates)
- C.- Pairing vibrations around N=30. (Ingredients: VAP-PN, AXIAL-AMP, β and Δ_{π} - Δ_{v} coordinates)

MFA: The Hartree-Fock-Bogoliubov Theory

Let $\{c_i, c_i^{\dagger}\}$ be the particle operators which define the harmonic oscillator basis, and

$$\alpha_{\mu} = \sum_{i} U_{i\mu}^* c_i + \sum_{i} V_{i\mu}^* c_i^{\dagger},$$

the most general Bogoliubov transformation.

We are looking for the coefficients $U {\rm and} \ V$ such that the product manybody wave function

$$|\varphi\rangle = \alpha_M \dots \alpha_1 |-\rangle,$$

minimizes the expression

$$\delta\langle\varphi|\hat{H} - \lambda\hat{N}|\varphi\rangle = 0,$$

the parameter λ being determined by the constraint

$$\langle \varphi | \hat{N} | \varphi \rangle = N,$$

with N the number of particles of our system.

Projected Mean Field Theories

To recover the symmetries we use the many-body w.f

$$|\Psi\rangle = \hat{P}^I_M \dots \hat{P}^N \hat{P}^Z |\varphi\rangle$$

with \hat{P} a projector on the corresponding symmetry.

***** If $|\varphi\rangle$ is determined by minimizing $E = \frac{\langle \varphi | \hat{H} | \varphi \rangle}{\langle \varphi | \varphi \rangle}$.

we refer to it as projection after the variation (PAV).

****** If $|\varphi\rangle$ is determined by minimizing $E_P = \frac{\langle \varphi | \hat{H} \hat{P}_M^I ... \hat{P}^N \hat{P}^Z | \varphi \rangle}{\langle \varphi | \hat{P}_M^I ... \hat{P}^N \hat{P}^Z | \varphi \rangle}$. we refer to it as variation after projection (VAP).

IMPORTANT: $| \varphi \rangle$ is always a product wave function.

Symmetry conserving GCM

In this case the the Ansatz for the AMPGCM is

$$\Psi_{\sigma I}^{N,Z} \rangle = \int dq \ f_{\sigma I}^{N,Z}(q) \ \hat{P}_M^I ... \hat{P}^N \hat{P}^Z \left| \varphi(q) \right\rangle,$$

where $f_{\sigma I}^{N,Z}(q)$ are the collective wave functions solution of the Hill-Wheeler equation

$$\int dq' \,\mathcal{H}_{I}^{N,Z}(q,q') \,f_{\sigma I}^{N,Z}(q') = E_{\sigma I}^{N,Z} \int dq' \,\mathcal{N}_{I}^{N,Z}(q,q') \,f_{\sigma I}^{N,Z}(q'),$$

with the projected norm and Hamiltonian kernels

$$\mathcal{N}_{I}^{N,Z}(q,q') = \langle \varphi(q) | \hat{P}_{M}^{I} ... \hat{P}^{N} \hat{P}^{Z} | \varphi(q') \rangle ,$$

$$\mathcal{H}_{I}^{N,Z}(q,q') = \langle \varphi(q) | H \hat{P}_{M}^{I} ... \hat{P}^{N} \hat{P}^{Z} | \varphi(q') \rangle .$$

The calculations: 2 steps

1.- We generate a large set of highly correlated HFB wave functions $|\varphi(q_i)\rangle$ by minimizing

$$E^{N}(q_{i}) = \frac{\langle \varphi(q_{i}) | (\hat{H} - \lambda_{i} \hat{Q}) \hat{P}^{N} | \varphi(q_{i}) \rangle}{\langle \varphi(q_{i}) | \hat{P}^{N} | \varphi(q_{i}) \rangle}$$

with the corresponding constraint on \hat{Q} .

2.- We perform configuration mixing calculations

$$|\Psi^{N,J}\rangle = \int (f(q))\hat{P}^N \hat{P}^J |\varphi(q)\rangle \, dq,$$

diagonalizing the Hill-Wheeler equation.

We can also have a look on the diagonal matrix elements projected onto good angular momentum and particle number, i.e.,

$$E^{N,J}(q_i) = \frac{\langle \varphi(q_i) | \hat{H} \hat{P}^N \hat{P}^J | \varphi(q_i) \rangle}{\langle \varphi(q_i) | \hat{P}^N \hat{P}^J | \varphi(q_i) \rangle}$$

Interaction.- In the calculations the Gogny force with the D1S parametrization has been used. All exchange terms of the force are considered to avoid divergences associated with the projections.

Configuration Space.- We take into account a large number of major harmonic oscillator shells.

Effective charges.- NO need of effective charges in the calculations of electromagnetic properties.

The beta (q₂₀) degree of freedom in the N=30 region

Examples of the angular momentum PEC and configuration mixing solutions

jueves 9 de junio de 2011

Particle number and Triaxial Angular Momentum Projection The nucleus ²⁴Mg

Experiment

Energy contour plots in the (β, γ) plane

 $|IM;NZ;\beta\gamma\rangle = \sum_{K} g_{K}|IMK,NZ;\beta\gamma\rangle$

Projected energies in the (β,γ) plane

²⁴Mg

T. R. Rodriguez and J.L.E., Phys. Rev. C81, 064323(2010)

Collective wave functions in the (β,γ) plane

Interplay of fluctuations in deformation and pairing in the GCM framework

How to constraint pairing degrees of freedom ? In the case of space deformation we use (β,γ)

For a pure monopole pairing force, one has state independent gap and the obvious choice is the pairing gap Δ

Which is the simplest choice for the Gogny force? We can have a hint from the monopole pairing case, in this case (Ring-Schuck)

$$\langle (\Delta \hat{N})^2 \rangle = 4 \sum_{k>0} u_k^2 v_k^2 = \Delta^2 \sum_{k>0} \frac{1}{E_k^2} \propto \Delta^2 \propto E_{PAIRING}$$

We will use as a constraint with Gogny force the quantity

$$\delta = \langle (\Delta \hat{N})^2 \rangle^{1/2} \propto (E_{PAIRING})^{1/2} (?)$$

Variational Equations (I)

We proceed in two steps. In the first one we determine the intrinsic wave functions by the minimalization principle

 $\delta E'^{N}[\phi(q,\delta)] = 0,$

the constrained energy being given by

$$E'^{N} = \frac{\langle \Phi | \hat{H} | \Phi \rangle}{\langle \Phi | \Phi \rangle} - \lambda_{q} \langle \phi | \hat{Q}_{20} | \phi \rangle - \lambda_{\delta} \langle \phi | (\Delta \hat{N})^{2} | \phi \rangle^{1/2},$$

with

$$|\Phi\rangle = P^N P^Z |\phi\rangle \text{ (VAP) or } |\Phi\rangle = |\phi\rangle \text{ and } |\phi\rangle = |HFB\rangle$$

and the Lagrange multipliers determined by the conditions:

$$\langle \phi | \hat{Q} | \phi \rangle = q_2, \qquad \langle \phi | (\Delta \hat{N})^2 | \phi \rangle^{1/2} = \delta.$$

Variational Equations (II)

In the second step we perform the configuration mixing calculations

$$|\Psi^{N,I,\sigma}\rangle = \int f^{N,I,\sigma}(q,\delta) \ \hat{P}^I \hat{P}^N \hat{P}^Z \ |\phi(q,\delta)\rangle dq d\delta.$$

The mixing coefficients being determined by the Hill-Wheeler equation

$$\int \left(\mathcal{H}^{N,Z,I}(q\delta,q'\delta') - E^{N,Z,I,\sigma}\mathcal{N}^{N,Z,I}(q\delta,q'\delta')\right) f^{N,Z,I,\sigma}(q'\delta')dq'd\delta' = 0,$$

Pairing energies vs. particle # fluctuations

We have seen that
$$\langle (\Delta N)^2 \rangle^{1/2} \propto \Delta \propto (-E_{PAIRING})^{1/2}$$

Contour curves of the square root of the pairing energies in the plane

 $(q_{20}, \langle (\Delta N)^2 \rangle^{1/2})$ with wave functions $P^{I=0}P^Z P^N |\Phi\rangle_{VAP}$

jueves 9 de junio de 2011

One dimensional calculations

jueves 9 de junio de 2011

Wave functions in various approaches

Comparison of the Energy and Quadrupole moments

		2^+_1	2^+_2	2^+_3
	E(2D)	-474.260	-470.457	-468.435
HFB+PNAMP	$\Delta E(1D-2D)$	0.621	0.536	1.166
	Q(2D)	-27.950	13.824	-40.985
	$\Delta Q(1D-2D)$	0.953	0.807	6.21
	E(2D)	-473.096	-471.417	-470.773
HFB+AMP	$\Delta E(1D-2D)$	0.555	1.481	2.551
	Q(2D)	-31.224	-20.381	-26.925
	$\Delta Q(1D-2D)$	1.04	13.615	-0.476
	E(2D)	-475.598	-471.888	-469.372
PN-VAP+PNAMP	$\Delta E(1D-2D)$	0.191	0.637	0.503
	Q(2D)	-29.556	15.299	-42.722
	$\Delta Q(1D-2D)$	-0.114	1.546	-6.841

Pairing energies of the lowest 0⁺ states

	0_{1}^{+}	0^+_2	0^+_3
	$E_P(Z), E_P(N)$	$E_P(Z), E_P(N)$	$E_P(Z), E_P(N)$
HFB+PNAMP (1D)	-2.183, -2.227	-1.994, -2.639	-2.555, -3.339
HFB+PNAMP(2D)	-3.604, -5.009	-2.484, -2.837	-2.884, -5.709
HFB+AMP(1D)	-1.274, -1.977	-1.751, -1.686	-0.151, -3.165
HFB+AMP(2D)	-1.723, -2.989	-3.321, -4.073	-2.881, -5.466
VAP+PNAMP(1D)	-4.756, -5.396	-4.848, -4.871	-4.404, -5.509
VAP+PNAMP(2D)	-4.888, -5.613	-4.144, -3.942	-4.787, -6.939

Two dimensional energy contour plots in various approaches

jueves 9 de junio de 2011

Energy convergence of the ground state

Approach

Energy (MeV)

Energy (MeV)

HFB PN_VAP +AMP (I=0) +beta_fluc +pair_fluc -470.097 -473.066 (-2.97) -475.805 (-2.74) -476.636 (-0.83) -476.865 (-0.23)

-448.234 -450.534 (-2.30) -453.180 (-2.65) -454.136 (-0.96) -454.275 (-0.14)

Conclusions

- Symmetry Conserving Configuration Mixing calculations provide a general and, at the same time, detailed description of atomic nuclei.
- Pairing fluctuations play a fundamental role in the description of excited states.
- The small collectivity of the pairing correlations makes necessary the VAP approach for the configuration mixing calculations.
- At least for the nuclei considered in this work the pairing vibrations are strongly damped by the deformation degree of freedom.
- The ground state energy seems to have converged with the included terms (the GCM contributions for additional degrees is negligible).