Finite amplitude method for nuclear response function

Takashi Nakatsukasa (RNC: RIKEN Nishina Center)

Collaborators: Paolo Avogadro (RNC/Milano), Tsunenori Inakura (RNC)

Contents

- Finite amplitude method
- A feasible approach to the HF+RPA
- Pygmy dipole resonances in light to medium-heavy nuclei
- Shell effects and magic numbers
- Neutron-skin effect
- Finite amplitude method for superfluid systems
- An alternative way to the HFB+QRPA

Time-dependent Hartree-Fock (TDHF)

Time-dependent Hartree-Fock equation
(Time-dependent Kohn-Sham equation)

$$
\begin{aligned}
& i \frac{\partial}{\partial t} \phi_{i}(t)=\left\{h(t)+V_{\mathrm{ext}}(t)\right\} \phi_{i}(t) \\
& i \frac{\partial}{\partial t} \rho(t)=\left[h(t)+V_{\mathrm{ext}}(t), \rho(t)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \rho(\vec{r}, t)=\sum_{i=1}^{N} \mid \phi_{i}(\vec{r}, t)^{2} \\
& h(t)=h[\rho(t)]
\end{aligned}
$$

Small-amplitude limit (Random-phase approximation)

One-body density operator under a TD external potential

$$
i \frac{\partial}{\partial t} \rho(t)=\left[h(t)+V_{\mathrm{ext}}(t), \rho(t)\right]
$$

Assuming that the external potential is weak,

$$
\begin{aligned}
& \rho(t)=\rho_{0}+\delta \rho(t) \quad h(t)=h_{0}+\delta h(t)=h_{0}+\left.\frac{\delta h}{\delta \rho}\right|_{\rho_{0}} \cdot \delta \rho(t) \\
& i \frac{\partial}{\partial t} \delta \rho(t)=\left[h_{0}, \delta \rho(t)\right]+\left[\delta h(t)+V_{\text {ext }}(t), \rho_{0}\right]
\end{aligned}
$$

Let us take the external field with a fixed frequency ω,

$$
V_{\text {ext }}(t)=V_{\text {ext }}(\omega) e^{-i \omega t}+V_{\text {ext }}^{+}(\omega) e^{+i \omega t}
$$

The density and residual field also oscillate with ω,

$$
\begin{aligned}
& \delta \rho(t)=\delta \rho(\omega) e^{-i \omega t}+\delta \rho^{+}(\omega) e^{+i \omega t} \\
& \delta h(t)=\delta h(\omega) e^{-i \omega t}+\delta h^{+}(\omega) e^{+i \omega t}
\end{aligned}
$$

The linear response (RPA) equation

$$
\omega \delta \rho(\omega)=\left[h_{0}, \delta \rho(\omega)\right]+\left[\delta h(\omega)+V_{\mathrm{ext}}(\omega), \rho_{0}\right]
$$

Note that all the quantities, except for ρ_{0} and h_{0}, are non-hermitian.

$$
\begin{aligned}
\delta \rho(t)= & \sum_{i=1}^{A}\left(\left|\delta \psi_{i}(t)\right\rangle\left\langle\phi_{i}\right|+\left|\phi_{i}\right\rangle\left\langle\delta \psi_{i}(t)\right|\right) \\
& \square \\
& \delta \rho(\omega)=\sum_{i=1}^{A}\left(\left|X_{i}(\omega)\right\rangle\left\langle\phi_{i}\right|+\left|\phi_{i}\right\rangle\left\langle Y_{i}(\omega)\right|\right)
\end{aligned}
$$

This leads to the following equations for X and Y :

$$
\begin{array}{r}
\left.\omega\left|X_{i}(\omega)\right\rangle=\left(h_{0}-\varepsilon_{i}\right)\left\langle X_{i}(\omega)\right\rangle+\hat{Q}\left\{\delta h(\omega)+V_{\mathrm{ext}}(\omega)\right\} \phi_{i}\right\rangle \\
\omega\left\langle Y_{i}(\omega)\right|=-\left\langle Y_{i}(\omega)\right|\left(h_{0}-\varepsilon_{i}\right)-\left\langle\phi_{i}\right|\left\{\delta h(\omega)+V_{\mathrm{ext}}(\omega)\right\} \hat{Q} \\
\hat{Q}=\sum_{i=1}^{A}\left(1-\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)
\end{array}
$$

These are nothing but the "RPA linear-response equations". X and Y are called "forward" and "backward" amplitudes.

Matrix formulation

$$
\begin{align*}
& \left.\omega\left|X_{i}(\omega)\right\rangle=\left(h_{0}-\varepsilon_{i}\right)\left|X_{i}(\omega)\right\rangle+\hat{Q}\left\{\delta h(\omega)+V_{\text {ext }}(\omega)\right\} \phi_{i}\right\rangle \\
& \omega\left\langle Y_{i}(\omega)\right|=-\left\langle Y_{i}(\omega)\right|\left(h_{0}-\varepsilon_{i}\right)-\left\langle\phi_{i}\right|\left\{\delta h(\omega)+V_{\text {ext }}(\omega)\right\} \hat{Q} \tag{1}
\end{align*}
$$

If we expand the X and Y in particle orbitals:

$$
\left|X_{i}(\omega)\right\rangle=\sum_{m>A}\left|\phi_{m}\right\rangle X_{m i}(\omega), \quad\left|Y_{i}(\omega)\right\rangle=\sum_{m>A}\left|\phi_{m}\right\rangle Y_{m i}^{*}(\omega)
$$

Taking overlaps of Eq.(1) with particle orbitals

$$
\left\{\left(\begin{array}{cc}
A & B \\
B^{*} & A^{*}
\end{array}\right)-\omega\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\}\binom{X_{m i}(\omega)}{Y_{m i}(\omega)}=-\binom{\left(V_{\text {ext }}\right)_{m i}}{\left(V_{\text {ext }}\right)_{i m}}
$$

$$
\begin{aligned}
& A_{m i, n j}=\left(\varepsilon_{m}-\varepsilon\right) \delta_{m n} \delta_{i j}+\left.\left\langle\phi_{m}\right| \frac{\partial h}{\partial \rho_{n j}}\right|_{\rho_{0}}\left|\phi_{i}\right\rangle \\
& B_{m i, n j}=\left\langle\phi_{m}\right| \frac{\partial h}{\partial \rho_{j n}}| |_{\rho_{0}}\left|\phi_{i}\right\rangle
\end{aligned}
$$

In many cases, setting $V_{\text {ext }}=0$ and solve the normal modes of excitations:
\rightarrow Diagonalization of the matrix

Small-amplitude approximation
 --- Linear response (RPA) equation ---

$$
\begin{gathered}
\left\{\left(\begin{array}{cc}
A & B \\
B^{*} & A^{*}
\end{array}\right)-\omega\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\}\binom{X_{m i}(\omega)}{Y_{m i}(\omega)}=-\binom{\left(V_{\text {ext }}\right)_{m i}}{\left(V_{\text {ext }}\right)_{i m}} \\
A_{m i, n j}=\left(\varepsilon_{m}-\varepsilon\right) \delta_{m n} \delta_{i j}+\left\langle\phi_{m}\right| \frac{\partial h}{\partial \rho_{n j}}\left|\phi_{\rho_{0}}\right\rangle
\end{gathered} \begin{aligned}
& B_{m i, n j}=\left\langle\phi_{m}\right| \frac{\partial h}{\partial \rho_{j n}}\left|\phi_{\rho_{0}}\right\rangle \begin{array}{l}
\text { • Tedious calculation of residual interactions } \\
\text { - Computationally very demanding, } \\
\text { especially for deformed systems. }
\end{array}
\end{aligned}
$$

However, in principle, the self-consistent single-particle Hamiltonian should contain everything. We can avoid explicit calculation of residual interactions.

Finite Amplitude Method

T.N., Inakura, Yabana, PRC76 (2007) 024318.

Residual fields can be estimated by the finite difference method:

$$
\begin{aligned}
& \delta h(\omega)=\frac{1}{\eta}\left(h\left[\left\langle\psi^{\prime}\right|,|\psi\rangle\right]-h_{0}\right) \\
& \left|\psi_{i}\right\rangle=\left|\phi_{i}\right\rangle+\eta\left|X_{i}(\omega)\right\rangle, \quad\left\langle\psi_{i}^{\prime}\right|=\left\langle\phi_{i}\right|+\eta\left\langle Y_{i}(\omega)\right|
\end{aligned}
$$

Starting from initial amplitudes $X^{(0)}$ and $Y^{(0)}$, one can use an iterative method to solve the following linear-response equations.

$$
\begin{aligned}
& \left.\left.\omega\left|X_{i}(\omega)\right\rangle=\left(h_{0}-\varepsilon_{i}\right) X_{i}(\omega)\right\rangle+\hat{Q}\left\{\delta h(\omega)+V_{\text {ext }}(\omega)\right\} \phi_{i}\right\rangle \\
& \omega\left\langle Y_{i}(\omega)\right|=-\left\langle Y_{i}(\omega)\right|\left(h_{0}-\varepsilon_{i}\right)-\left\langle\phi_{i}\right|\left\{\delta h(\omega)+V_{\text {ext }}(\omega)\right\} \hat{Q}
\end{aligned}
$$

Programming of the RPA code becomes very much trivial, because we only need calculation of the single-particle potential, with different bras and kets.

Numerical Details

- SkM* interaction (no pairing)
- 3D mesh in adaptive coordinate
- $\mathrm{R}_{\text {box }}=15 \mathrm{fm}$
- Complex energy with $\Gamma=1.0 \mathrm{MeV}$
- $\Delta \mathrm{E}=0.3 \mathrm{MeV}$
up to $\mathrm{E}=38.1 \mathrm{MeV}$ (128 points)
- Energy-paralleled calc. on PACS-CS

adaptive coordinate PRC71, 024301

PACS-CS @ Univ. of Tsukuba

Electric Dipole strength distributions

-3D mesh

- SkM ${ }^{*}$
- $R_{\text {box }}=15 \mathrm{fm}$
- No pairing

Sn	1	1	1	
Cd	1	1	1	
Pd	1		1	1

Rurnellelrurr

 Kr

Ti NNNMNNNNMN Ti
Ca Nundindendind Ca
Ar acicharalan Ar
$\rightarrow \operatorname{Hel}$

$-\infty \operatorname{HNN} / \operatorname{An} \wedge \mathrm{Ne}$
ananiso
40 spherical nuclei 176 prolate nuclei 59 oblate nuclei
72 triaxial nuclei

Magic numbers for PDR emergence

Next magic number: $\mathrm{N}=51$

${ }^{100} \mathrm{G}$ ${ }^{98} \mathrm{Ge}$

Magic numbers and low-/ orbits

- Magic numbers: $\mathrm{N}=15,29,51, \ldots$
- Importance of weakly bound orbits with $l=0$, 1 , and 2.

PDR strength is correlated with any quantity?

Linear correlation was found for $R_{n}-R_{p}$ for neutron-deficient Sn (spherical) isotopes

Piekarewicz, PRC73 (2006) 044325.

Universal correlation with skin thickness

- PDR fraction/ ΔR_{np} shows a universal rate.
- The rate is about $0.2 / \mathrm{fm}$.

TDHFB for superfluid systems

Time-dependent Hartree-Fock-Bogoliubov equation

$$
\begin{aligned}
& i \frac{\partial}{\partial t} \Psi_{i}(t)=\left\{H(t)+V_{\text {ext }}(t)\right\} \Psi_{i}(t) \\
& i \frac{\partial}{\partial t} R(t)=\left[H(t)+V_{\text {ext }}(t), R(t)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Psi_{i}=\binom{U_{i}}{V_{i}} \quad H(t)=H[R(t)]=\left(\begin{array}{cc}
h & \Delta \\
-\Delta^{*} & -h^{*}
\end{array}\right) \\
& R(t)=\sum_{i} \Psi_{i} \Psi_{i}^{+}=\left(\begin{array}{cc}
\rho(t) & \kappa(t) \\
-\kappa^{*}(t) & 1-\rho^{*}(t)
\end{array}\right)
\end{aligned}
$$

Finite amplitude method for superfluid systems

Avogadro and TN, PRC in press (arXiv:1104.3692)
Residual fields can be calculated by

$$
\begin{array}{ll}
\delta h(\omega)=\frac{1}{\eta}\left\{\left[\overline{\bar{V}}_{\eta}^{*}, V_{\eta}\right] h_{0}\right\} & V_{\eta}=V+\eta U^{*} Y, \quad \bar{V}_{\eta}^{*}=V^{*}+\eta U X \\
\delta \Delta(\omega)=\frac{1}{\eta}\left\{\left[\overline{\bar{V}}_{\eta}^{*}, U_{\eta}\right]-\Delta_{0}\right\} & U_{\eta}=U+\eta V^{*} Y
\end{array}
$$

QRPA equations are

$$
\begin{array}{cc}
\left(E_{\mu}+E_{v}-\omega\right) X_{\mu \nu}+\delta H_{\mu \nu}^{20}=F_{\mu \nu}^{20} & \\
\left(E_{\mu}+E_{v}+\omega\right) Y_{\mu \nu}+\delta \widetilde{H}_{\mu \nu}^{02^{*}}=F_{\mu \nu}^{02} & \left(\begin{array}{cc}
\delta H_{\mu \nu} \\
\delta \widetilde{H}_{\mu v} &
\end{array}\right)=W^{+}\left(\begin{array}{cc}
\delta h & \delta \Delta \\
\delta \widetilde{\Delta}^{+} & -\delta h^{+}
\end{array}\right) W \\
W=\left(\begin{array}{ll}
U & V^{*} \\
V & U^{*}
\end{array}\right)
\end{array}
$$

Finite amplitude method for QRPA

- Numerical implementation to HFBRAD
- Spherical HFB (radial coord.) + FAM
- Time-odd fields are added

FAM-QRPA

Test calculation: IS monopole
Our result: Red line
qp cut-off at 60 MeV
All 2qp states are included.
Calculation by Terasaki et al.
(PRC71, 034310 (2005): Green line

$174 \mathrm{Sn}, 0^{+}$						
	$\omega=4 \mathrm{MeV}$	$\omega=12 \mathrm{MeV}$		$\omega=20 \mathrm{MeV}$		
η	ϵ	$N_{\text {iter }}$	ϵ	$N_{\text {iter }}$	ϵ	$N_{\text {iter }}$
10^{-2}	0.44	1000	$1.63 \cdot 10^{-1}$	1000	$8.84 \cdot 10^{-3}$	1000
10^{-4}	$6.10 \cdot 10^{-5}$	1000	$1.76 \cdot 10^{-5}$	1000	$<10^{-5}$	469
10^{-5}	$<10^{-5}$	161	$<10^{-5}$	439	$<10^{-5}$	469
10^{-8}	$<10^{-5}$	161	$<10^{-5}$	439	$<10^{-5}$	469
10^{-9}	$<10^{-5}$	161	$<10^{-5}$	439	$<10^{-5}$	469
10^{-10}	$<10^{-5}$	161	$1.19 \cdot 10^{-5}$	1000	$1.46 \cdot 10^{-5}$	1000

Linearization parameter

$$
\eta=10^{-9} \sim 10^{-5}
$$

Summary

- Finite amplitude method (PRC76, 024318) provides an alternative approach to (Q)RPA.
- FAM does not require explicit calculations of residual interactions, thus, fully self-consistent calculations for deformed nuclei can be easily achieved.
- Systematic calculations of photoabsorption cross sections in light to heavy nuclei
- Reproduce the GDR peak and shape evolution
- Magic numbers for PDR ($\mathrm{N}=15,29,51, \ldots$), which are related to the occupation of low-I orbitals (s, p, d).
- Universal correlation between the PDR fraction and the neutron skin thickness; $m_{1}(P D R) / m_{1} \approx(0.2 / f m) \Delta R_{n p}$.

Axially deformed superfluid nuclei

$$
\begin{aligned}
& \left(\begin{array}{cc}
h-\lambda & \Delta \\
-\Delta^{*} & -(h-\lambda)^{*}
\end{array}\right)\binom{U_{\mu}(\rho, z ; \sigma)}{V_{\mu}(\rho, z ; \sigma)}=E_{\mu}\binom{U_{\mu}(\rho, z ; \sigma)}{V_{\mu}(\rho, z ; \sigma)} z \\
& \left\{\left(\begin{array}{cc}
A & B \\
B^{*} & A^{*}
\end{array}\right)-\omega\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\}\binom{X_{m i}(\omega)}{Y_{m i}(\omega)}=0
\end{aligned}
$$

- HFB equations are solved in the 2D coordinate space, assuming the axial symmetry for the SkM^{*} functional with the cutoff of $E_{\mathrm{qp}}<60 \mathrm{MeV}$.
- The pairing energy functional is the one determined by a global fitting to deformed nuclei (Yamagami, Shimizu, TN, PRC 80, 064301 (2009))
- QRPA matrix is calculated in the quasiparticle basis $\left(E_{2 q p}<60 \mathrm{MeV}\right)$.
- Neglect the residual Coulomb interaction

Shape phase transition in the EDF approach

QRPA calculation of photoabsorption cross section

SkM* functional

K.Yoshida and TN, arXiv:1008.1520;

PRC in press: (Cal. at RICC)
(b)

PDR in rare-earth nuclei

- Larger PDR strength for deformed nuclei
- Experimental data suggest a concentrated E1 strength in $\mathrm{E}=5.5-8 \mathrm{MeV}$.
- Calculation beyond QRPA is necessary.

Finite Amplitude Method

T.N., Inakura, Yabana, PRC76 (2007) 024318.

A method to avoid the explicit calculation of the residual fields (interactions)

$$
\begin{aligned}
& \delta \rho(t)=\delta \rho(\omega) e^{-i \omega t}+\delta \rho^{+}(\omega) e^{+i \omega t} \\
& \delta h(t)=\delta h(\omega) e^{-i \omega t}+\delta h^{+}(\omega) e^{+i \omega t}
\end{aligned}
$$

Residual fields are proportional to $\delta \rho(\omega)$

$$
\begin{aligned}
& \delta h(\omega)=\left.\frac{\delta h}{\delta \rho}\right|_{\rho_{0}} \cdot \delta \rho(\omega) \\
& \delta \rho(\omega)=\sum_{i=1}^{A}\left(\left|X_{i}(\omega)\right\rangle\left\langle\phi_{i}\right|+\left|\phi_{i}\right\rangle\left\langle Y_{i}(\omega)\right|\right)
\end{aligned}
$$

Therefore, $\delta h(\omega)$ is a functional of $\left\langle\phi_{i}\right|,\left|\phi_{i}\right\rangle,\left|X_{i}(\omega)\right\rangle,\left\langle Y_{i}(\omega)\right|$ but, should be independent of $\left|Y_{i}(\omega)\right\rangle,\left\langle X_{i}(\omega)\right|$

Fully self-consistent calculation of E1 strength distribution

Inakura, Nakatsukasa, Yabana, in preparation

Peak splitting by deformation

$$
\beta_{2 m}=\frac{4 \pi}{3} \frac{\left\langle r^{2} Y_{2 m}\right\rangle}{\frac{5}{3}\left\langle r^{2}\right\rangle}
$$

3D H.O. model
$\beta_{\delta E} \sim \beta_{2}$
Bohr-Mottelson, text book.

Centroid energy of IVGDR

