CONFIGURATION MIXING WITH RELATIVISTIC SCMF MODELS

Tamara Nikšić University of Zagreb

Supported by the Croatian Foundation for Science

Tamara Nikšić (UniZg)

Primošten 2011

9.6.2011. 1/30

Outline

- Relativistic nuclear energy density functional
 - Adjusting the model parameters
 - Applications: ground-state properties and giant resonances
- collective Hamiltonian model based on the SCRMF
 - Applications: ²⁴⁰Pu isotope
 - Applications: Pt isotopes
 - Applications: Kr isotopes
 - Applications: *N* = 28 isotones
- Summary and outlook

Energy density functional consists of the mean-field and the pairing contribution

$$\mathcal{E} = \mathcal{E}_{\mathsf{RMF}}[j_{\mu}, \rho_{s}] + \mathcal{E}_{\mathsf{pp}}(\kappa, \kappa^{*})$$

Elementary building blocks

$$(\bar{\psi}\mathcal{O}_{\tau}\Gamma\psi) \quad \mathcal{O}_{\tau} \in \{\mathbf{1}, \tau_i\} \quad \Gamma \in \{\mathbf{1}, \gamma_{\mu}, \gamma_{\mathbf{5}}, \gamma_{\mathbf{5}}\gamma_{\mu}, \sigma_{\mu\nu}\}$$

Isoscalar-scalar density

$$\rho_{s}(\mathbf{r}) = \sum_{k}^{occ} \bar{\psi}_{k}(\mathbf{r})\psi_{k}(\mathbf{r})$$

Energy density functional consists of the mean-field and the pairing contribution

$$\mathcal{E} = \mathcal{E}_{\mathsf{RMF}}[j_{\mu}, \rho_{s}] + \mathcal{E}_{\mathsf{pp}}(\kappa, \kappa^{*})$$

Elementary building blocks

$$(\bar{\psi}\mathcal{O}_{\tau}\Gamma\psi) \quad \mathcal{O}_{\tau}\in\{\mathbf{1},\tau_i\} \quad \Gamma\in\{\mathbf{1},\gamma_{\mu},\gamma_{\mathbf{5}},\gamma_{\mathbf{5}}\gamma_{\mu},\sigma_{\mu\nu}\}$$

Isoscalar-vector current

$$j_{\mu}(\mathbf{r}) = \sum_{k}^{occ} ar{\psi}_{k}(\mathbf{r}) \gamma_{\mu} \psi_{k}(\mathbf{r})$$

Energy density functional consists of the mean-field and the pairing contribution

$$\mathcal{E} = \mathcal{E}_{\mathsf{RMF}}[j_{\mu}, \rho_{s}] + \mathcal{E}_{\mathsf{pp}}(\kappa, \kappa^{*})$$

Elementary building blocks

$$(\bar{\psi}\mathcal{O}_{\tau}\Gamma\psi) \quad \mathcal{O}_{\tau} \in \{\mathbf{1}, \tau_i\} \quad \Gamma \in \{\mathbf{1}, \gamma_{\mu}, \gamma_5, \gamma_5\gamma_{\mu}, \sigma_{\mu\nu}\}$$

Isovector-scalar density

$$ec{
ho_s}(\mathbf{r}) = \sum_k^{occ} ar{\psi}_k(\mathbf{r}) ec{ au}_k(\mathbf{r})$$

Energy density functional consists of the mean-field and the pairing contribution

$$\mathcal{E} = \mathcal{E}_{\mathsf{RMF}}[j_{\mu}, \rho_{s}] + \mathcal{E}_{\mathsf{pp}}(\kappa, \kappa^{*})$$

Elementary building blocks

$$(\bar{\psi}\mathcal{O}_{\tau}\Gamma\psi) \quad \mathcal{O}_{\tau}\in\{\mathbf{1},\tau_i\} \quad \Gamma\in\{\mathbf{1},\gamma_{\mu},\gamma_{\mathbf{5}},\gamma_{\mathbf{5}}\gamma_{\mu},\sigma_{\mu\nu}\}$$

Isovector-vector current

$$ec{j}_{\mu}(\mathbf{r}) = \sum_{k}^{occ} ar{\psi}_k(\mathbf{r}) ec{ au} j_{\mu} \psi_k(\mathbf{r})$$

Energy density functional consists of the mean-field and the pairing contribution

$$\mathcal{E} = \mathcal{E}_{\mathsf{RMF}}[j_{\mu}, \rho_{s}] + \mathcal{E}_{\mathsf{pp}}(\kappa, \kappa^{*})$$

Kinetic energy term

$$\mathcal{E}_{kin} = \sum_{i} v_i^2 \int ar{\psi}_i(\mathbf{r}) \left(-\gamma
abla + m
ight) \psi_i(\mathbf{r})$$

Energy density functional consists of the mean-field and the pairing contribution

$$\mathcal{E} = \mathcal{E}_{\mathsf{RMF}}[j_{\mu}, \rho_{s}] + \mathcal{E}_{\mathsf{pp}}(\kappa, \kappa^{*})$$

Second order terms $\mathcal{E}_{2nd} = \frac{1}{2} \int \left[\alpha_{v}(\rho_{v})\rho_{v}^{2} + \alpha_{s}(\rho_{v})\rho_{s}^{2} + \alpha_{tv}(\rho_{v})\rho_{tv}^{2} \right] d\mathbf{r}$

Energy density functional consists of the mean-field and the pairing contribution

$$\mathcal{E} = \mathcal{E}_{\mathsf{RMF}}[j_{\mu}, \rho_{\mathsf{s}}] + \mathcal{E}_{\mathsf{pp}}(\kappa, \kappa^*)$$

Derivative terms

$$\mathcal{E}_{der} = rac{1}{2} \int \delta_s
ho_s \Delta
ho_s d\mathbf{r}$$

Energy density functional consists of the mean-field and the pairing contribution

$$\mathcal{E} = \mathcal{E}_{\mathsf{RMF}}[j_{\mu}, \rho_{s}] + \mathcal{E}_{\mathsf{pp}}(\kappa, \kappa^{*})$$

Coulomb interaction

$$E_{coul}=rac{e}{2}\int j_{\mu}^{p}\mathcal{A}^{\mu}d\mathbf{r}$$

Energy density functional consists of the mean-field and the pairing contribution

$$\mathcal{E} = \mathcal{E}_{\mathsf{RMF}}[j_{\mu},
ho_{s}] + \mathcal{E}_{\mathsf{pp}}(\kappa, \kappa^{*})$$

Pairing interaction: finite range separable pairing

$$V(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1}', \mathbf{r}_{2}') = G\delta(\mathbf{R} - \mathbf{R}')P(\mathbf{r})P(\mathbf{r}')\frac{1}{2}(1 - P^{\sigma})$$
$$\mathbf{R} = \frac{1}{2}(\mathbf{r}_{1} + \mathbf{r}_{2}), \quad \mathbf{r} = \mathbf{r}_{1} - \mathbf{r}_{2}, \quad P(\mathbf{r}) = \frac{1}{4\pi a^{2}}e^{-\frac{r^{2}}{4a^{2}}}$$

Parameters *a* and *G* are adjusted to reproduce the pairing gap in the symmetric nuclear matter calculated using the Gogny force.

Couplings are density-dependent

$$\alpha_i(\rho_v) = \mathbf{a}_i + (\mathbf{b}_i + \mathbf{c}_i \mathbf{x}) \, \mathbf{e}^{-\mathbf{d}_i \mathbf{x}}, \quad \mathbf{x} = \rho/\rho_{sat}, \quad \mathbf{i} \equiv \mathbf{s}, \ \mathbf{v}, \ \mathbf{tv}$$

Model parameters

$$a_s, b_s, c_s, d_s, a_v, b_v, d_v, b_{tv}, d_{tv}, \delta_s$$

Adjusted to empirical ground-state properties of finite nuclei.

Empirical ground-state properties of finite nuclei can only determine a small set of parameters.

Nuclear many-body correlations

Implicitly included in the EDF

- \bullet short-range \rightarrow hard repulsive core of the NN-interaction
- long-range → mediated by nuclear resonance modes (giant resonances)
- the corresponding corrections vary smoothly with the number of nucleons → absorbed in the model parameters
- heavy deformed systems present best examples of mean-field nuclei
- high density of states reduces the shell effects

Empirical mass formula

The calculated masses of finite nuclei are primarily sensitive to three leading terms in the empirical mass formula

$$\mathcal{E}_B=a_v\mathcal{A}+a_s\mathcal{A}^{2/3}+a_4rac{(N-Z)^2}{4\mathcal{A}}+\cdots$$

Fitting strategy

- generate families of effective interactions that are characterized by different values of *a_v*, *a_s* and the symmetry energy *S*₂(0.12fm⁻³)
- determine which parametrization minimizes the deviation from empirical binding energies of a large set of deformed nuclei

Empirical mass formula

The calculated masses of finite nuclei are primarily sensitive to three leading terms in the empirical mass formula

$$E_B=a_vA+a_sA^{2/3}+a_4rac{(N-Z)^2}{4A}+\cdots$$

Fitting strategy

- generate families of effective interactions that are characterized by different values of a_v, a_s and the symmetry energy S₂(0.12fm⁻³)
- determine which parametrization minimizes the deviation from empirical binding energies of a large set of deformed nuclei

Rare-earth region

Sm (Z=62), Gd (Z=64), Dy (Z=66), Er (Z=68), Yb (Z=70), Hf (Z=72)

Actinides Th (Z=90), U (Z=92), Pu (Z=94), Cm (Z=96), Cf (Z=98)

Total	
64 isotopes	

< ロ > < 同 > < 回 > < 回 >

Tamara Nikšić (UniZg)

Rare-earth region

Sm (Z=62), Gd (Z=64), Dy (Z=66), Er (Z=68), Yb (Z=70), Hf (Z=72)

Actinides Th (Z=90), U (Z=92), Pu (Z=94), Cm (Z=96), Cf (Z=98)

Total	
64 isotopes	

< ロ > < 同 > < 回 > < 回 >

Tamara Nikšić (UniZg)

Rare-earth region

Sm (Z=62), Gd (Z=64), Dy (Z=66), Er (Z=68), Yb (Z=70), Hf (Z=72)

Actinides Th (Z=90), U (Z=92), Pu (Z=94), Cm (Z=96), Cf (Z=98)

Total	
64 isotopes	

< ロ > < 同 > < 回 > < 回 >

Tamara Nikšić (UniZg)

Rare-earth region

Sm (Z=62), Gd (Z=64), Dy (Z=66), Er (Z=68), Yb (Z=70), Hf (Z=72)

Actinides Th (Z=90), U (Z=92), Pu (Z=94), Cm (Z=96), Cf (Z=98)

Total 64 isotopes

Tamara Nikšić (UniZg)

Rare-earth region

Sm (Z=62), Gd (Z=64), Dy (Z=66), Er (Z=68), Yb (Z=70), Hf (Z=72)

Actinides Th (Z=90), U (Z=92), Pu (Z=94), Cm (Z=96), Cf (Z=98)

Total	
64 isotopes	

< ロ > < 同 > < 回 > < 回 >

Tamara Nikšić (UniZg)

Rare-earth region

Sm (Z=62), Gd (Z=64), Dy (Z=66), Er (Z=68), Yb (Z=70), Hf (Z=72)

Actinides Th (Z=90), U (Z=92), Pu (Z=94), Cm (Z=96), Cf (Z=98)

Total	
64 isotopes	

< ロ > < 同 > < 回 > < 回 >

Tamara Nikšić (UniZg)

Ground-state properties

Tamara Nikšić (UniZg)

Primošten 2011

9.6.2011. 8/30

Excitation energies of collective modes

Implementation of the collective Hamiltonian model based on the SCRMF

Collective Hamiltonian

$$\mathcal{H}_{coll} = \mathcal{T}_{rot} + \mathcal{T}_{vib} + \mathcal{V}_{coll}$$

Rotational energy

$$\mathcal{T}_{rot} = rac{1}{2}\sum_{k=1}^{3}rac{\hat{J}_k^2}{\mathcal{I}_k}$$

The moments of inertia are calculated by using the Inglis-Belyaev formula.

Implementation of the collective Hamiltonian model based on the SCRMF

Collective Hamiltonian

$$\mathcal{H}_{coll} = \mathcal{T}_{rot} + \mathcal{T}_{vib} + \mathcal{V}_{coll}$$

Vibrational energy

$$\begin{aligned} \mathcal{T}_{\textit{vib}} &= -\frac{\hbar^2}{2\beta^4\sqrt{wr}} \left[\partial_\beta \sqrt{\frac{r}{w}} \beta^4 B_{\gamma\gamma} \partial_\beta - \partial_\beta \sqrt{\frac{r}{w}} \beta^3 B_{\beta\gamma} \partial_\gamma \right] \\ &- \frac{\hbar^2}{\sin 3\gamma \sqrt{wr}} \left[-\frac{1}{\beta^2} \partial_\gamma \sqrt{\frac{r}{w}} \sin 3\gamma B_{\beta\gamma} \partial_\beta + \frac{1}{\beta} \partial_\gamma \sqrt{\frac{r}{w}} \sin 3\gamma B_{\beta\beta} \partial_\gamma \right] \end{aligned}$$

The mass parameters are calculated in the cranking approximation .

Tamara Nikšić (UniZg)

Implementation of the collective Hamiltonian model based on the SCRMF

Collective Hamiltonian

$$\mathcal{H}_{coll} = \mathcal{T}_{rot} + \mathcal{T}_{vib} + \mathcal{V}_{coll}$$

Collective potential

$$\mathcal{V}_{\textit{coll}}(\beta,\gamma) = \textit{E}_{\textit{tot}}(\beta,\gamma) - \Delta\textit{V}_{\textit{vib}}(\beta,\gamma) - \Delta\textit{V}_{\textit{rot}}(\beta,\gamma)$$

Corresponds to the mean-field potential energy surface with the zero point energy subtracted .

Applications: ²⁴⁰Pu isotope

Applications: ²⁴⁰Pu isotope

The moments of inertia are renormalized by factor \approx 1.3 to compensate the difference between IB and TV moments of inertia.

$$E_{4_1^+}^{th}/E_{2_1^+}^{th}=3.33$$

 $E_{4_1^+}^{exp}/E_{2_1^+}^{exp}=3.31$

イロト イヨト イヨト イヨト

Tamara Nikšić (UniZg)

Primošten 2011

▲ ■ ▶ ■ ∽ Q < ○9.6.2011. 14/30

★@> ★ ≥ > ★ ≥

< E

▲ 圖 ▶ ▲ 画 ▶

< ≣ ▶ ≡ ∽ Q (9.6.2011. 17/30

イロト イヨト イヨト イヨト

Tamara Nikšić (UniZg)

Primošten 2011

9.6.2011. 18/30

20

0.8

20

10

0.8

- g.s. band → predominantely prolate
- 2_2^+ state: γ -vibration
- $0_2^+, 2_3^+ \rightarrow$ predominantely oblate
- mixing in the ground state

Tamara Nikšić (UniZg)

Primošten 2011

9.6.2011. 20 / 30

Tamara Nikšić (UniZg)

Primošten 2011

9.6.2011. 20 / 30

Applications: N = 28 isotones

The variation of the mean-field shapes is governed by the evolution of the underlying shell structure of single-nucleon orbitals.

Tamara Nikšić (UniZg)

⁴⁶Ar isotope: single-particle levels

Tamara Nikšić (UniZg)

Primošten 2011

9.6.2011. 23 / 30

⁴⁴S isotope: single-particle levels

9.6.2011. 24/30

⁴²Si isotope: single-particle levels

9.6.2011. 25/30

⁴⁰Mg isotope: single-particle levels

9.6.2011. 26/30

$N \approx 28$ observables

- excitation energies and reduced electric quadrupole transition probabilities
- full configuration space, no need for effective charges

Tamara Nikšić (UniZg)

Primošten 2011

9.6.2011. 28/30

Summary and outlook

Summary

Unified microscopic description of the structure of stable and nuclei far from stability, and reliable extrapolations toward the drip lines.

Summary

When extended to take into account collective correlations, it describes deformations and shape-coexistence phenomena associated with shell evolution.

Outlook

Further improvements of the model and more systematic calculations.

A (10) > A (10) > A (10)

Summary and outlook

Summary

Unified microscopic description of the structure of stable and nuclei far from stability, and reliable extrapolations toward the drip lines.

Summary

When extended to take into account collective correlations, it describes deformations and shape-coexistence phenomena associated with shell evolution.

Outlook

Further improvements of the model and more systematic calculations.

(4回) (4回) (4回)

Summary and outlook

Summary

Unified microscopic description of the structure of stable and nuclei far from stability, and reliable extrapolations toward the drip lines.

Summary

When extended to take into account collective correlations, it describes deformations and shape-coexistence phenomena associated with shell evolution.

Outlook

Further improvements of the model and more systematic calculations.

イロト イポト イヨト イヨ

Collaborators

- Georgios Lalazissis (Aristotle University of Thessaloniki)
- Zhipan Li (Peking University)
- Jie Meng (Peking University)
- Leszek Próchniak (Maria Curie-Sklodowska University, Lublin)
- Peter Ring (Technical University Munich)
- Dario Vretenar (University of Zagreb)