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included as well. In the early stage of the collapse (ρ < 1010 g/cm3) the
core composition is dominated by nuclei from the iron mass range (pf -shell
nuclei with mass numbers A ≈ 45–65). During this collapse phase, one
has EF ∼ Q (Q is the mass difference of parent and daughter nuclei), and
hence a reliable derivation of the capture rate requires an accurate detailed
description of the GT strength distributions for the thermal ensemble of
parent states. It has been demonstrated in [11,12] that modern shell model
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Introduction — Electron capture in stellar evolution

Collapse of a massive star and a supernova explosion
— from Langanke 2008, Acta Physica Polonica B,39.
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Introduction — Electron capture in stellar evolution

Collapse of a massive star and a supernova explosion
— from Langanke 2008, Acta Physica Polonica B,39.

The dynamics of core-collapse supernova ⇐
{

core entropy
lepton to baryon ratioYe

⇐ weak interaction processes

{
β decay

electron capture dominate !
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Introduction — Electron capture in stellar evolution

Core Collapse type II supernova

♦ initial stage: ρ ∼ 1010 g/cm3, T = 300− 800 keV, µe of the same order as Q value

Electrons are captured by iron range nuclei A < 60.

Electron capture rates are sensitive to detailed GT distribution.

♦ higher densities and temperature: µe � Q value

Electrons are captured by neutron rich nuclei with A > 65.

Electron capture rates are mainly determined by the total GT strength and centroid

energy.

♦ ρ > 1011 g/cm3, µe ∼ 30 MeV:

Forbidden transitions couldn’t be neglected.
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Introduction — Electron capture process

The electron capture on a nucleus A
ZXN

e− +A
Z XN →A

Z−1 X ∗
N+1 + νe (1)

Cross section for a transition followed from Fermi’s golden rule reads:

dσ

dΩ
=

1

(2π)2
V 2E 2

ν

1

2

∑
lepton spins

1

2Ji + 1

∑
MiMf

|〈f |ĤW |i〉|2. (2)

V : the quantization volume; Eν: energy of outgoing electron neutrino; HW : the Hamil-
tonian of the weak interaction.

The evaluation of the matrix elements 〈f |ĤW |i〉 is crucial for the calculation of electron
capture cross sections. The initial and final states of nuclei are obtained from nuclear
structure models.
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Introduction — Theoretical description

Different nuclear models could be employed to extract information on the initial and final
states for the investigation of the stellar electron capture.

Independent Particle Model (IPM): for A = 21− 60
X the first standard tabulation of nuclear weak-interaction rates

G. M. Fuller, W. A. Fowler, M. J. Newman, Ap. J. S. 42, 447 1980; 48, 279, 1982;
G. M. Fuller, W. A. Fowler, M. J. Newman, Ap. J. 252, 715, 1982; 293, 1, 1985.

Shell Model Monte Carlo(SMMC): for A = 45− 65

X for the first time determines in a microscopic way the Gamow-Teller contributions
to the presupernova electron capture rates

X take into account thermal effects
D. J. Dean, K. Langanke, L. Chatterjee, P. B. Radha, and M. R. Strayer, Phys. Rev. C 58, 536, 1998.

Large Scale Shell Model diagonalization (LSSM): for A = 45− 65

X an updated tabulation of weak interaction rates
X reproduce the experimental GT+ distributions

K. Langanke, G. Martinez-Pinedo, Phys. Lett. B 436, 19, 1998;
K. Langanke, G. Martinez-Pinedo, Nucl. Phys. A 673, 481, 2000;
K. Langanke, G. Martinez-Pinedo, At. Data Nucl. Data Tables 79, 1, 2001.
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Introduction — Theoretical description

RPA approach: more suitable for

{
the inclusion of forbidden transitions
global calculations of many nuclei

Hybrid model (SMMC/RPA): for nuclei with Z < 40, N > 40

X The SMMC firstly gives the finite temperature occupation numbers, and then the
electron capture rates are calculated within the RPA approach.

K. Langanke, E. Kolbe, and D. J. Dean, Phys. Rev. C 63, 032801, 2001.

QRPA based on Nilsson model with separable Gamow-Teller forces: for A = 18− 100
J. -U. Nabi, and H. V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 71, 149, 1999;

J. -U. Nabi, and H. V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 88, 237, 2004.

QRPA based on Woods-Saxon potential with thermofield dynamics(TFD) formalism
A. A. Dzhioev, A. I. Vdovin, V. Y. Ponomarev, J. Wambach, K. Langanke, and G. Mart́ınez-Pinedo, Phys. Rev.

C 81, 015804, 2010.

finite temperature RPA based on Skyrme functionals
X The self-consistent RPA approach is for the first time introduced to the evaluation

of electron capture cross sections.
N. Paar, G. Colò, E. Khan and D. Vretenar, Phys. Rev. C 80, 055801, 2009.
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Introduction — Motivation

Success of covariant density functional
RMF, RHB : successful for the description of ground-state properties in nuclei all over
the periodic table, including those far away from the stability line.

P. Ring, Prog. Part. Nucl. Phys. 37, 193, 1996.
D. Vretenar, A. V. Afanasjev, G. A. Lalazissis and P. Ring, Phys. Rep. 409, 101, 2005.

J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys. 57, 470, 2006.

Relativistic RPA (RRPA): giant resonances, spin isospin resonancs
Z. Y. Ma, V. Giai Nguyen, A. Wandelt D. Vretenar and P. Ring, Nucl. Phys. A 686, 173, 2001.
P. Ring, Z. Y. Ma, V. Giai Nguyen, D. Vretenar, A. Wandelt and L. G. Cao, Nucl. Phys. A 694, 249, 2001.
T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 66, 064302, 2002.
N. Paar, P. Ring, T. Nikšić and D. Vretenar,Phys. Rev. C 67, 034312, 2003.
N. Paar, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 69, 054303, 2004.

H. Z. Liang, V. Giai Nguyen, and J. Meng, Phys. Rev. Lett. 101, 122502, 2008.

finite temperature RRPA: new low-lying structure of dipole response

Y.F. Niu, N. Paar, D. Vretenar and J. Meng, Phys. Lett. B 681, 315, 2009.

In this work
Investigate the stellar electron capture cross sections and rates based on finite temperature
RRPA with the inclusion of multipole transitions.

Y.F. Niu, N. Paar, D. Vretenar and J. Meng, Phys.Rev. C 83, 045807, 2011.
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PN-RRPA at finite temperature

Proton-neutron RPA equations at finite temperature(
AJ

pnp′n′ BJ
pnp′n′

−BJ
pnp′n′ −AJ

pnp′n′

) (
X J

p′n′

Y J
p′n′

)
= ων

(
X J

pn

Y J
pn

)
,

where A and B are the matrix elements of particle-hole residual interactions:

AJ
pnp′n′ = (εp − εh̄)δpp′δnn′ + V J

pn′np′(ũpṽnũp′ṽn′ + ṽpũnṽp′ũn′)(fn′ − fp′)

BJ
pnp′n′ = V J

pn′np′(ũpṽnṽp′ũn′ + ṽpũnũp′ṽn′)(fp′ − fn′),

Occupation probability: fi = [1 + exp(εi−µ
kT )]−1, and we define

ũp = 0, ṽp = 1, ũn = 1, ṽn = 0, when fp > fn (p̄n);

ũp = 1, ṽp = 0, ũn = 0, ṽn = 1, when fp < fn (pn̄).

Normalization ∑
pn

[(X Jν
pn )2 − (Y Jν

pn )2]|fp − fn| = 1

Transition strength

BT−
Jν = |

∑
pn

(X Jν
pn ũpṽn + Y Jν

pn ṽpũn)〈p||T−||n〉|fn − fp||2,

BT+
Jν = |

∑
pn

(X Jν
pn ṽpũn + Y Jν

pn ũpṽn)〈p||T+||n〉|fn − fp||2.
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Electron capture rate

Rate

λec =
1

π2~3

∫ ∞

E0
e

peEeσec(Ee)f (Ee, µe, T )dEe (3)

where E 0
e = max(|Qif |, mec

2), Qif = −ERPA −∆np, and pe = (E 2
e −m2

ec
4)1/2.

Electron distribution in stellar environment

f (Ee, µe, T ) =
1

exp(Ee−µe
kT ) + 1

(4)

where the chemical potential is determined from the density ρ by inverting the relation

ρYe =
1

π2NA

(mec

~

)3
∫ ∞

0

(fe − fe+)p2dp (5)

Ye: the ratio of the number of electrons to the number of baryons; NA: Avagadro’s
number; fe, fe+: electron and positron distribution.
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Contributions from different Jπ excitations
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For 56Fe, 1+ (i.e. GT+) gives almost all the contributions to cross section all the way up
to Ee = 30 MeV. In the other components of excitations, the first forbidden transitions
(0−, 1−, 2−) are more important.

For neutron rich nucleus 76Ge, the first forbidden transitions start to give more contri-
butions than 1+ from Ee w 12 MeV.
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Electron capture cross section
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σec ∝ E 2
ν

Eν = Ee − ERPA −∆NP

Threshold energy for electron cap-
ture is lowered with increased tem-
perature.

Cross section is less dependent on
temperature at high electron ener-
gies.

Threshold energies increase and
cross sections decrease with neutron
number.

difference with SMMC:
GT distribution
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Electron capture cross section
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Cross sections are reduced by an or-
der of magnitude compared to irons,
but similar evolution with tempera-
ture is found.

strong temperature dependence at
Ee ≤ 12 MeV.

SMMC/RPA predicts larger cross
sections due to the strong configu-
ration mixing.
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Electron capture rate
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Electron capture rates increase with temperature and the electron densities.
- In high electron densities, it increases more slowly.

similar trend of temperature dependence as shell model
- better agreement in 54Fe than 56Fe

- ρYe = 109 g/cm3: λe ∼ 5 MeV, close to threshold energy ⇒ sensitive to detailed GT distribution

⇒ larger discrepancy
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Electron capture rate
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similar behavior with temperature and electron density as Fe
more similar temperature dependence as TQRPA

- lower densities: strong temperature dependence. λe ∼ 11 MeV, dominated by GT

- larger densities: less sensitive to temperature. λe ∼ 23 MeV, dominated by forbidden transitions
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Summary & Perspectives

The electron capture cross sections and rates in stellar environment, including multipole
excitations, are calculated based on self-consistent finite temperature PN-RRPA.

In the calculation of cross sections, the GT+ transitions provide major contribution for
54,56Fe, whereas for 76,78Ge forbidden transitions play an important role at Ee > 10

MeV.

The principal effect of increasing temperature is the lowering of the electron-capture

threshold energy. For 76,78Ge the cross sections in the low-energy region are very sen-

sitive to temperature.

In the calculation of capture rates, for 54,56Fe FTRRPA displays a similar trend as shell

model. For 76,78Ge, the temperature dependence in FTRRPA is very close to TQRPA,

whereas the dependence is much weaker in the hybrid model.

Perspectives:

for open-shell nuclei at very low temperatures: pairing correlations

the inclusion of higher-order correlations beyond the RPA level
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Evolution of GT+ with temperature

0
2
4
6
8

1 0

e x p . 1

e x p . 3

 

e x p . 2

GT
+

5 4 F e  

 R P A
 R Q R P A
 R R P A
 T  =  1  M e V
 T  =  2  M e VL S S M

0 2 4 6 8 1 0
0
2
4
6
8

1 0

L S S M

e x p . 4 e x p . 2

 

GT
+

E  ( M e V )

5 6 F e  

Pairing correlations shift the tran-
sition to higher energy, because ad-
ditional energy is needed to break
a proton pair.

From T=0 (RQRPA) to T=1, en-
ergy decreases due to pairing col-
lapse.

From T=1 to T=2, energy de-
creases due to softening of the re-
pulsive residual interaction.

Transition strength becomes
weaker with increasing tempera-
ture or with pairing by the partial
occupation factors.

[1] M. C. Vetterli, et. al. Phys. Rev. C 40, 559, 1989.

[2] T. Rönnqvist, et. al. Nucl. Phys. A 563, 225, 1993.

[3] S. El-Kateb, et. al. Phys. Rev. C 49, 3128, 1994.

[4] D. Frekers, Nucl. Phys. A 752, 580c, 2005.
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Evolution of GT+ with temperature
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Unblocking mechanisms:
pairing correlations & thermal excitations.
From T=0 (RQRPA) to T=1:

energy decreases much

T=0:√
(εp − λp)2 + ∆2

p +
√

(εn − λn)2 + ∆2
n

T=1: εn − εp.

strength decreases much

pairing correlation ⇒ more diffused fermi

surface

From T=1 to T=2:
energy decreases a little while strength is
enhanced a lot.
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Electron capture cross section

The electron capture on a nucleus A
ZXN

e− +A
Z XN →A

Z−1 X ∗
N+1 + νe (6)

Cross section for a transition between initial state |i〉 and a final state |f 〉 followed from
Fermi’s golden rule reads:

dσ

dΩ
= 2π|〈f |ĤW |i〉|2V

E 2
ν dEν

(2π)3
δ(Wf −Wi)/

1

V
, (7)

where V E2
ν dEν

(2π)3
is the number of neutrino states in the interval Eν ∼ Eν + dEν, and

electron flux is 1/V . δ(Wf −Wi) means the energy conservation.

Average the initial states and sum over all the final states for a specific nuclear excitation
state f :

dσ

dΩ
=

1

2Ji + 1

∑
Mi

1

2

∑
lepton spins

∑
Mf

∫
dEν2π|〈f |ĤW |i〉|2V

E 2
ν

(2π)3
δ(Wf −Wi)/

1

V

=
1

(2π)2
V 2E 2

ν

1

2

∑
lepton spins

1

2Ji + 1

∑
MiMf

|〈f |ĤW |i〉|2. (8)
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Electron capture cross section

The Hamiltonian of the weak interaction HW is expressed in the standard current-
current form, i.e., in terms of the nuclear Jλ and lepton jλ currents.

HW = − G√
2

∫
d3xJλ(x)jλ(x) (9)

G : weak coupling constant.

Denoting the appropriate leptonic matrix element by lµe
−iq·x, the resulting transition

matrix element reads

〈f |ĤW |i〉 = − G√
2
lµ

∫
dxe−iq·x〈f |Jµ(x)|i〉

= − G√
2

∫
dxe−iq·x[l ·J (x)fi − l0J0(x)fi ]. (10)

q = pν − pl : the momentum transfer.
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Electron capture cross section

Making use of the expansion

e i q·x =
∞∑

J=0

[4π(2J + 1)]1/2i J jJ(κx)YJ0(Ωx), (11)

eqλe
iq·x = − i

κ

∞∑
J=0

[4π(2J + 1)]1/2i J∇(jJ(κx)YJ0(Ωx)), for λ = 0, (12)

= −
∞∑

J≥1

[2π(2J + 1)]1/2i J [λjJ(κx)Yλ
JJ1 +

1

κ
∇× (jJ(kx)Yλ

JJ1)], for λ = ±1,(13)

where YM
Jl1 =

∑
mλ〈lm1λ|l1JM〉Ylm(θ, φ)eλ, the transition matrix elements could become

〈f |ĤW |i〉 = − G√
2
〈f |{−

∑
λ=±1

lλ

∞∑
J≥1

[2π(2J + 1)]1/2(−i)J [λT̂ mag
J−λ (κ) + T̂ el

J−λ(κ)]

+
∞∑

J=0

[4π(2J + 1)]1/2(−i)J [l3L̂J0(κ)− l0M̂J0(κ)]}|i〉, (14)
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Electron capture cross section

where the multipole operators are defined by

M̂JM(κ) = M̂JM + M̂5
JM =

∫
dx[jJ(κx)YJM(Ωx)]Ĵ0(x), (15)

L̂JM(κ) = L̂JM + L̂5
JM =

i

κ

∫
dx[∇(jJ(κx)YJM(Ωx))] · Ĵ (x), (16)

T̂ el
JM(κ) = T̂ el

JM + T̂ el5
JM =

1

κ

∫
dx[∇× (jJ(κx)YM

JJ1)] · Ĵ (x), (17)

T̂ mag
JM (κ) = T̂mag

JM + T̂mag5
JM =

∫
dx[(jJ(κx)YM

JJ1)] · Ĵ (x). (18)
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Electron capture cross section

Making use of the Wigner-Eckart theorem

〈Jf Mf |TJM|JiMi〉 = (−)Jf−Mf

(
Jf J Ji

−Mf M Mi

)
〈Jf ||TJ||Ji〉 (19)

and the orthogonality relation of 3j coefficients

1

2Ji + 1

∑
Mf

∑
Mi

(
Jf J Ji

−Mf M Mi

) (
Jf J ′ Ji

−Mf M ′ Mi

)
= δJJ ′δMM ′

1

2J + 1

1

2Ji + 1
, (20)

we could get

1

2Ji + 1

∑
Mf

∑
Mi

|〈f |ĤW |i〉|2

=
G 2

2

1

2Ji + 1
{

∑
λ=±1

lλl
∗
λ

∑
J≥1

2π|〈Jf ||λT mag
J + T el

J ||Ji〉|2

+
∑
J≥0

4π[l3l
∗
3 |〈Jf ||LJ||Ji〉|2 + l0l

∗
0 |〈Jf ||MJ||Ji〉|2 − 2Rel3l

∗
0 〈Jf ||LJ||Ji〉〈Jf ||MJ||Ji〉∗]}.

(21)
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Electron capture cross section

Until now, the electron capture cross section has the form

dσ

dΩ
=

1

(2π)2
V 2E 2

ν

1

2

∑
lepton spins

1

2Ji + 1

∑
MiMf

|〈f |ĤW |i〉|2

=
1

(2π)2
V 2E 2

ν

1

2

∑
lepton spins

G 2

2

1

2Ji + 1
{

∑
λ=±1

lλl
∗
λ

∑
J≥1

2π|〈Jf ||λT mag
J + T el

J ||Ji〉|2

+
∑
J≥0

4π[l3l
∗
3 |〈Jf ||LJ||Ji〉|2 + l0l

∗
0 |〈Jf ||MJ||Ji〉|2 − 2Rel3l

∗
0 〈Jf ||LJ||Ji〉〈Jf ||MJ||Ji〉∗]}.

As the summation of leptonic matrix element on lepton spins could be related to the unit
vectors of neutrino momentum ν̂ = pν/|pν|, transfer momentum q̂ = q/|q|, and
β = pe/Ee, the electron capture cross section finally becomes

dσ

dΩ
=

G 2

2π

E 2
ν

2Ji + 1
{
∑
J≥0

{(1− ν̂ · β + 2(ν̂ · q̂)(β · q̂))|〈Jf ||LJ||Ji〉|2

+(1 + ν̂ · β)|〈Jf ||MJ||Ji〉|2 − 2q̂ · (ν̂ + β)Re〈Jf ||LJ||Ji〉〈Jf ||MJ||Ji〉∗}
+

∑
J≥1

{(1− (ν̂ · q̂)(β · q̂))[|〈Jf ||T mag
J ||Ji〉|2 + |〈Jf ||T el

J ||Ji〉|2]

−2q̂ · (ν̂ − β)Re〈Jf ||T mag
J ||Ji〉〈Jf ||T el

J ||Ji〉∗}}. (22)
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♦ Allowed Processes: the long-wave limit where κ = |q| → 0.
The only surviving multipoles in this limit are

T el
1M =

i√
6π

FA

A∑
i=1

τ±(i)σ(i); Gamow-Teller (23)

M00 =
1√
4π

F1

A∑
i=1

τ±(i); Fermi (24)

Remarks
These operators give rise to the allowed weak transitions in the traditional picture of
the nucleus.

The operators and transitions they give rise to are known as Gamow-Teller and Fermi
respectively.
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