Advances in Nuclear Many-Body Theory Primosten, June 2011

Exploring the region of SuperHeavy nuclei with NEDF

Vaia D. Prassa

Aristotle University of Thessaloniki

Department of Physics

< 🗇 >

Outline

Results

- Binding EnergiesAxial Symmetry
- Triaxial Symmetry & Beyond Mean Field

Summary & Conclusions

Which is the limit of the nuclear mass and charge?

SHE: Exist due to subtle quantum mechanical effects

Balance between nuclear force and coulomb field

Experimental status: Synthesis of Cn (Z=112) and Z=114 @GSI, elements up to Z=118 @Dubna in fusion reactions. Laboratories: GSI-FAIR, GANIL-SPIRAL2, Dubna, Jyvaskyla, Livermore, RIKEN.

Experimental status: Synthesis of Cn (Z=112) and Z=114 @GSI, elements up to Z=118 @Dubna in fusion reactions. Laboratories: GSI-FAIR, GANIL-SPIRAL2, Dubna, Jyvaskyla, Livermore, RIKEN.

Experimental status: Synthesis of Cn (Z=112) and Z=114 @GSI, elements up to Z=118 @Dubna in fusion reactions. Laboratories: GSI-FAIR, GANIL-SPIRAL2, Dubna, Jyvaskyla, Livermore, RIKEN.

Experimental status: Synthesis of Cn (Z=112) and Z=114 @GSI, elements up to Z=118 @Dubna in fusion reactions. Laboratories: GSI-FAIR, GANIL-SPIRAL2, Dubna, Jyvaskyla, Livermore, RIKEN.

Nuclear Energy density functionals

DFT provides a way to systematically map the many-body problem onto a one-body problem without explicitly involving inter-nucleon interactions. **Fundamental entity**: **Energy Functional** that depends on one-body densities and currents.

Relativistic Mean Field

In conventional QHD a nucleus is described as a system of Dirac nucleons coupled to exchange mesons through an effective Lagrangian. In MF approximation the meson-field operators are replaced by their expectation values in the nuclear ground state.

In analogy to the meson-exchange RMF phenomenology, an effective Lagrangian that includes the isoscalar-scalar, isoscalar vector and isovector-vector four-fermion interactions, reads

$$\mathcal{L} = \bar{\psi}(i\gamma\partial - m)\psi - \frac{1}{2}\alpha_{S}(\hat{\rho})(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_{V}(\hat{\rho})(\bar{\psi}\gamma^{\mu}\psi)(\bar{\psi}\gamma_{\mu}\psi)$$
(1)
$$-\frac{1}{2}\alpha_{TV}(\hat{\rho})(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) - \frac{1}{2}\delta_{S}(\partial_{\nu}\bar{\psi}\psi)(\partial^{\nu}\bar{\psi}\psi) - e\bar{\psi}\gamma A \frac{(1-\tau_{3})}{2}\psi$$

Free nucleon Lagrangian, **point-coupling interaction terms** and **coupling of the protons to the electromagnetic field**. Derivative terms accounts for the leading effects of *finiterange interactions*.

Vaia D. Prassa

Nuclear Energy density functionals

DFT provides a way to systematically map the many-body problem onto a one-body problem without explicitly involving inter-nucleon interactions. **Fundamental entity**: **Energy Functional** that depends on one-body densities and currents.

Relativistic Mean Field

In conventional QHD a nucleus is described as a system of Dirac nucleons coupled to exchange mesons through an effective Lagrangian. In MF approximation the meson-field operators are replaced by their expectation values in the nuclear ground state.

In analogy to the meson-exchange RMF phenomenology, an **effective Lagrangian** that includes the isoscalar-scalar, isoscalar vector and isovector-vector **four-fermion interactions**, reads

$$\mathcal{L} = \bar{\psi}(i\gamma\partial - m)\psi - \frac{1}{2}\alpha_{S}(\hat{\rho})(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_{V}(\hat{\rho})(\bar{\psi}\gamma^{\mu}\psi)(\bar{\psi}\gamma_{\mu}\psi)$$
(1)
$$-\frac{1}{2}\alpha_{TV}(\hat{\rho})(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) - \frac{1}{2}\delta_{S}(\partial_{\nu}\vec{\psi}\psi)(\partial^{\nu}\vec{\psi}\psi) - e\bar{\psi}\gamma A \frac{(1-\tau_{3})}{2}\psi$$

Free nucleon Lagrangian, **point-coupling interaction terms** and **coupling of the protons to the electromagnetic field**. Derivative terms accounts for the leading effects of *finiterange interactions*.

Vaia D. Prassa

Nuclear Energy density functionals

DFT provides a way to systematically map the many-body problem onto a one-body problem without explicitly involving inter-nucleon interactions. **Fundamental entity**: **Energy Functional** that depends on one-body densities and currents.

Relativistic Mean Field

In conventional QHD a nucleus is described as a system of Dirac nucleons coupled to exchange mesons through an effective Lagrangian. In MF approximation the meson-field operators are replaced by their expectation values in the nuclear ground state.

In analogy to the meson-exchange RMF phenomenology, an **effective Lagrangian** that includes the isoscalar-scalar, isoscalar vector and isovector-vector **four-fermion interac-tions**, reads

$$\mathcal{L} = \bar{\psi}(i\gamma\partial - m)\psi - \frac{1}{2}\alpha_{S}(\hat{\rho})(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_{V}(\hat{\rho})(\bar{\psi}\gamma^{\mu}\psi)(\bar{\psi}\gamma_{\mu}\psi)$$
(1)
$$-\frac{1}{2}\alpha_{TV}(\hat{\rho})(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) - \frac{1}{2}\delta_{S}(\partial_{\nu}\bar{\psi}\psi)(\partial^{\nu}\bar{\psi}\psi) - e\bar{\psi}\gamma A\frac{(1-\tau_{3})}{2}\psi$$

Free nucleon Lagrangian, point-coupling interaction terms and coupling of the protons to the electromagnetic field. Derivative terms accounts for the leading effects of *finite-range interactions*.

Vaia D. Prassa

NEDF RHB

Relativistic Hartree-Fock-Bogoliubov theory

Analysis of **open-shell nuclei** \Rightarrow **correlations** in the self-consistent RMF. Unified treatment of the nuclear MF (particle-hole (ph)) and pairing (particle-particle (pp)) correlations. Crucial for an accurate description of ground states and properties of excited states in weakly bound nuclei.

$$E_{RMF}[\hat{\rho},\hat{k},\phi_m] = E_{RMF}[\hat{\rho},\phi_m] + E_{pair}\hat{k}], E_{pair}[\hat{k}] = \frac{1}{4} Tr[\hat{k}^* V^{pp}\hat{k}]$$
(2)

* Separable pairing interaction is used:
$$< k | V^{^{1}S_{0}} | k^{'} > = -Gp(k)p(k^{'}).$$

Beyond MF approximation

Nuclear structure far from stability (i.e. spectra and transition probabilities..) Restoration of the Hamiltonian symmetries that are broken on the MF level and fluctuations of collective coordinates.

Collective Bohr Hamiltonian:

$$\hat{H} = \hat{T}_{vib} + \hat{T}_{rot} + V_{coll} \tag{3}$$

with the vibration and the rotational kinetic energy and the collective potential energy, terms.

Vaia D. Prassa

NEDF RHB

Relativistic Hartree-Fock-Bogoliubov theory

Analysis of **open-shell nuclei** \Rightarrow **correlations** in the self-consistent RMF. Unified treatment of the nuclear MF (particle-hole (ph)) and pairing (particle-particle (pp)) correlations. Crucial for an accurate description of ground states and properties of excited states in weakly bound nuclei.

$$E_{RMF}[\hat{\rho},\hat{k},\phi_m] = E_{RMF}[\hat{\rho},\phi_m] + E_{pair}\hat{k}], E_{pair}[\hat{k}] = \frac{1}{4} Tr[\hat{k}^* V^{pp}\hat{k}]$$
(2)

* Separable pairing interaction is used: $< k | V^{^{1}S_{0}} | k' > = -Gp(k)p(k')$.

Beyond MF approximation

Nuclear structure far from stability (i.e. spectra and transition probabilities..) Restoration of the Hamiltonian symmetries that are broken on the MF level and fluctuations of collective coordinates.

Collective Bohr Hamiltonian:

$$\hat{H} = \hat{T}_{vib} + \hat{T}_{rot} + V_{coll} \tag{3}$$

with the vibration and the rotational kinetic energy and the collective potential energy, terms.

NEDF RHB

Relativistic Hartree-Fock-Bogoliubov theory

Analysis of **open-shell nuclei** \Rightarrow **correlations** in the self-consistent RMF. Unified treatment of the nuclear MF (particle-hole (ph)) and pairing (particle-particle (pp)) correlations. Crucial for an accurate description of ground states and properties of excited states in weakly bound nuclei.

$$E_{RMF}[\hat{\rho},\hat{k},\phi_m] = E_{RMF}[\hat{\rho},\phi_m] + E_{pair}\hat{k}], E_{pair}[\hat{k}] = \frac{1}{4} Tr[\hat{k}^* V^{pp}\hat{k}]$$
(2)

* Separable pairing interaction is used: $< k | V^{^{1}S_{0}} | k' > = -Gp(k)p(k')$.

Beyond MF approximation

Nuclear structure far from stability (i.e. spectra and transition probabilities..) Restoration of the Hamiltonian symmetries that are broken on the MF level and fluctuations of collective coordinates.

Collective Bohr Hamiltonian:

$$\hat{H} = \hat{T}_{vib} + \hat{T}_{rot} + V_{coll} \tag{3}$$

with the vibration and the rotational kinetic energy and the collective potential energy, terms.

Vaia D. Prassa

<mark>Binding Energies</mark> Axial Symmetry Triaxial Symmetry & Beyond Mean Field

Testing the global behavior of the model with two sets of effective interactions.

Binding energies for A = 224 - 264. In most cases the r.m.s. error less than 900 keV.

Support the extension of the calculation to heavier nuclei.

<mark>Binding Energies</mark> Axial Symmetry Triaxial Symmetry & Beyond Mean Field

Testing the global behavior of the model with two sets of effective interactions.

Binding energies for A = 224 - 264. In most cases the r.m.s. error **less** than **900 keV**.

Support the extension of the calculation to heavier nuclei.

<mark>Binding Energies</mark> Axial Symmetry Triaxial Symmetry & Beyond Mean Field

Testing the global behavior of the model with two sets of effective interactions.

Binding energies for A = 224 - 264. In most cases the r.m.s. error **less** than **900 keV**.

Support the extension of the calculation to heavier nuclei.

Binding Energies **Axial Symmetry** Triaxial Symmetry & Beyond Mean Field

Q_a-values

Identification of SHE by their $\alpha\text{-decay}$ chains.

```
Q_a = BE(parent) + BE(^4He) - BE(daughter)
```

Binding Energies **Axial Symmetry** Triaxial Symmetry & Beyond Mean Field

Q_a-values

Identification of SHE by their $\alpha\text{-decay}$ chains.

 $Q_a = BE(parent) + BE(^4He) - BE(daughter)$

Binding Energies **Axial Symmetry** Triaxial Symmetry & Beyond Mean Field

Q_a-values

Identification of SHE by their $\alpha\text{-decay}$ chains.

$$Q_a = BE(parent) + BE(^4He) - BE(daughter)$$

Binding Energies **Axial Symmetry** Triaxial Symmetry & Beyond Mean Fielc

Q_a-values

Identification of SHE by their $\alpha\text{-decay}$ chains.

$$Q_a = BE(parent) + BE(^4He) - BE(daughter)$$

Binding Energies Axial Symmetry Friaxial Symmetry & Beyond Mean Field

T_a-values

The Viola-Seaborg-Sobiczewski (VSS) formula.

$$log_{10}T_{1/2} = [aZ + b][Q/MeV]^{-1/2} + cZ + h_{log},$$

$$\begin{split} & \texttt{a} = 1.66175, \ \texttt{b} = -8.5166, \ \texttt{c} = -0.20228, \ \texttt{d} = -33.9069 \\ & h_{log} = 0, \ \texttt{even-even} \\ & h_{log} = 0.772, \ \texttt{odd-even} \\ & h_{log} = 1.066, \ \texttt{even-odd} \\ & h_{log} = 1.114, \ \texttt{odd-odd} \end{split}$$

Binding Energies Axial Symmetry Friaxial Symmetry & Beyond Mean Field

T_a-values

The Viola-Seaborg-Sobiczewski (VSS) formula.

$$log_{10}T_{1/2} = [aZ + b][Q/MeV]^{-1/2} + cZ + h_{log},$$

$$\begin{split} & \texttt{a} = 1.66175, \ \texttt{b} = -8.5166, \ \texttt{c} = -0.20228, \ \texttt{d} = -33.9069 \\ & h_{log} = 0, \ \texttt{even-even} \\ & h_{log} = 0.772, \ \texttt{odd-even} \\ & h_{log} = 1.066, \ \texttt{even-odd} \\ & h_{log} = 1.114, \ \texttt{odd-odd} \end{split}$$

Binding Energies **Axial Symmetry** Triaxial Symmetry & Beyond Mean Field

T_a-values

The Viola-Seaborg-Sobiczewski (VSS) formula.

$$log_{10}T_{1/2} = [aZ + b][Q/MeV]^{-1/2} + cZ + h_{log},$$

$$\begin{split} & \texttt{a} = 1.66175, \ \texttt{b} = -8.5166, \ \texttt{c} = -0.20228, \ \texttt{d} = -33.9069 \\ & h_{log} = 0, \ \texttt{even-even} \\ & h_{log} = 0.772, \ \texttt{odd-even} \\ & h_{log} = 1.066, \ \texttt{even-odd} \\ & h_{log} = 1.114, \ \texttt{odd-odd} \end{split}$$

Binding Energies **Axial Symmetry** Friaxial Symmetry & Beyond Mean Field

T_a-values

The Viola-Seaborg-Sobiczewski (VSS) formula.

$$log_{10}T_{1/2} = [aZ + b][Q/MeV]^{-1/2} + cZ + h_{log},$$

$$\begin{split} & \texttt{a} = 1.66175, \ \texttt{b} = -8.5166, \ \texttt{c} = -0.20228, \ \texttt{d} = -33.9069 \\ & h_{log} = 0, \ \texttt{even-even} \\ & h_{log} = 0.772, \ \texttt{odd-even} \\ & h_{log} = 1.066, \ \texttt{even-odd} \\ & h_{log} = 1.114, \ \texttt{odd-odd} \end{split}$$

Binding Energies Axial Symmetry Triaxial Symmetry & Beyond Mean Field

Q_a -values

Good agreement with the experimental data. Maximum discrepancy 1MeV for ²⁸⁶114.

Prediction for ²⁹⁴120, $Q_a \approx 12.4$ MeV.

Binding Energies Axial Symmetry Triaxial Symmetry & Beyond Mean Field

Q_a -values

Good agreement with the experimental data. Maximum discrepancy 1MeV for 286 114.

Prediction for ²⁹⁴120, $Q_a \approx 12.4$ MeV.

T_a -values

Sensitive to small changes of Q_a -values. Good agreement with exp. data.

Motivation Introduction Results Summary & Conclusions Motivation Binding Energies Axial Symmetry Triaxial Symmetry & Beyond Mean Field

Decay chain of ²⁹⁰116 PES- 3D MF

0⁺states - Beyond MF

Decay chain of ²⁹⁰116 PES- 3D MF

0⁺states - Beyond MF

Vaia D. Prassa

Motivation Introduction Results Summary & Conclusions Motivation Binding Energies Axial Symmetry Triaxial Symmetry & Beyond Mean Field

Decay chain of ²⁹²116 PES- 3D MF

0⁺states - **Beyond MF**

Decay chain of ²⁹²116 PES- 3D MF

0⁺states - Beyond MF

Vaia D. Prassa

Motivation Introduction Results Summary & Conclusions Binding Energies Axial Symmetry Triaxial Symmetry & Beyond Mean Field

Decay chain of ²⁹⁴120 PES -3D MF

0⁺states -Beyond MF

Vaia D. Prassa

Vaia D. Prassa

Motivation Introduction Results Summary & Conclusions Motivation Binding Energies Axial Symmetry Triaxial Symmetry & Beyond Mean Field

Decay chain of $^{290}116$ 0^+_1 states

0^+_2 states

0.1

0.2 0.3 0.4 0.5 B

0.2 0.3 0.4 0.5 3

0.1

Vaia D. Prassa

Motivation Introduction Results Summary & Conclusions Binding Energies Axial Symmetry Triaxial Symmetry & Beyond Mean Field

Decay chain of $^{292}116$ 0^+_1 states

0^+_2 states

Vaia D. Prassa

Decay chain of $^{294}120$ 0^+_1 states

0^+_2 states

 0^+_2 states

Vaia D. Prassa

Exploring the region of SuperHeavy nuclei with NEDF

(deg)

Vaia D. Prassa

The calculations involved even-even, odd-even and odd-odd nuclei with 104 < Z < 120, in axial and triaxial schemes of RHB model and with a collective Bohr Hamiltonian, beyond the MF approximation.

Conclusions:

- Deformation affects play an important role in the description of SHE. Strongly deformed minima appear in the cases of isotopes ²⁹⁰116, ²⁹²116 and ²⁹⁴120.
- The inclusion of triaxiality gives soft or triaxial structures of those SHE.
- The calculated Q_a-values agree very well with the exp.data with a max discrepancy of 1MeV.
- The a-decay half-lives (T_{1/2}) were calculated with Viola-Seaborg-Sobiczewski formula. Good agreement with the exp.data, however they appear to be very sensitive to small changes of the Q_a-values.
- Beyond MF calculations are necessary for the description of SHE.

- Deformation affects play an important role in the description of SHE. Strongly deformed minima appear in the cases of isotopes ²⁹⁰116 , ²⁹²116 and ²⁹⁴120.
- The inclusion of triaxiality gives soft or triaxial structures of those SHE.
- The calculated Q_a-values agree very well with the exp.data with a max discrepancy of 1MeV.
- The a-decay half-lives (T_{1/2}) were calculated with Viola-Seaborg-Sobiczewski formula. Good agreement with the exp.data, however they appear to be very sensitive to small changes of the Q_a-values.
- Beyond MF calculations are necessary for the description of SHE.

- Deformation affects play an important role in the description of SHE. Strongly deformed minima appear in the cases of isotopes ²⁹⁰116 , ²⁹²116 and ²⁹⁴120.
- The inclusion of triaxiality gives soft or triaxial structures of those SHE.
- The calculated Q_a-values agree very well with the exp.data with a max discrepancy of 1MeV.
- The a-decay half-lives (T_{1/2}) were calculated with Viola-Seaborg-Sobiczewski formula. Good agreement with the exp.data, however they appear to be very sensitive to small changes of the Q_a-values.
- Beyond MF calculations are necessary for the description of SHE.

- Deformation affects play an important role in the description of SHE. Strongly deformed minima appear in the cases of isotopes ²⁹⁰116 , ²⁹²116 and ²⁹⁴120.
- The inclusion of triaxiality gives soft or triaxial structures of those SHE.
- The calculated Q_a-values agree very well with the exp.data with a max discrepancy of 1MeV.
- The a-decay half-lives (T_{1/2}) were calculated with Viola-Seaborg-Sobiczewski formula. Good agreement with the exp.data, however they appear to be very sensitive to small changes of the Q_a-values.
- Beyond MF calculations are necessary for the description of SHE

- Deformation affects play an important role in the description of SHE. Strongly deformed minima appear in the cases of isotopes ²⁹⁰116 , ²⁹²116 and ²⁹⁴120.
- The inclusion of triaxiality gives soft or triaxial structures of those SHE.
- The calculated Q_a-values agree very well with the exp.data with a max discrepancy of 1MeV.
- The a-decay half-lives (T_{1/2}) were calculated with Viola-Seaborg-Sobiczewski formula. Good agreement with the exp.data, however they appear to be very sensitive to small changes of the Q_a-values.
- Beyond MF calculations are necessary for the description of SHE

- Deformation affects play an important role in the description of SHE. Strongly deformed minima appear in the cases of isotopes ²⁹⁰116 , ²⁹²116 and ²⁹⁴120.
- The inclusion of triaxiality gives soft or triaxial structures of those SHE.
- The calculated Q_a-values agree very well with the exp.data with a max discrepancy of 1MeV.
- The a-decay half-lives (T_{1/2}) were calculated with Viola-Seaborg-Sobiczewski formula. Good agreement with the exp.data, however they appear to be very sensitive to small changes of the Q_a-values.
- Beyond MF calculations are necessary for the description of SHE.

THANK YOU FOR YOUR ATTENTION

Collaboration: D. Vretenar, T. Nikšić PMF, Zagreb G. A. Lalazissis Aristotle Univ. Thessaloniki