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Which is the limit of the
nuclear mass and charge?

SHE: Exist due to subtle
quantum mechanical effects

Balance between nuclear force
and coulomb field

Experimental status: Synthesis of Cn (Z=112) and Z=114 @GSI, elements up to Z=118 @Dubna in
fusion reactions. Laboratories: GSI-FAIR, GANIL-SPIRAL2, Dubna, Jyvaskyla, Livermore, RIKEN.

Theoretical description: Microscopic-Macroscopic approaches or self-consistent mean field models,
have been applied to the investigation of SHE.
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NEDF
RHB

Nuclear Energy density functionals

DFT provides a way to systematically map the many-body problem onto a one-body
problem without explicitly involving inter-nucleon interactions. Fundamental entity:
Energy Functional that depends on one-body densities and currents.

Relativistic Mean Field

In conventional QHD a nucleus is described as a system of Dirac nucleons coupled to
exchange mesons through an effective Lagrangian. In MF approximation the meson-field
operators are replaced by their expectation values in the nuclear ground state.

In analogy to the meson-exchange RMF phenomenology, an effective Lagrangian that
includes the isoscalar-scalar, isoscalar vector and isovector-vector four-fermion interac-
tions, reads

L = ψ̄(iγ∂ −m)ψ −
1

2
αS (ρ̂)(ψ̄ψ)(ψ̄ψ)−

1

2
αV (ρ̂)(ψ̄γµψ)(ψ̄γµψ) (1)

−
1

2
αTV (ρ̂)(ψ̄~τγµψ)(ψ̄~τγµψ)−

1

2
δS (∂ν ψ̄ψ)(∂ν ψ̄ψ)− eψ̄γA

(1− τ3)

2
ψ

Free nucleon Lagrangian, point-coupling interaction terms and coupling of the protons
to the electromagnetic field. Derivative terms accounts for the leading effects of finite-
range interactions.
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NEDF
RHB

Relativistic Hartree-Fock-Bogoliubov theory

Analysis of open-shell nuclei ⇒ correlations in the self-consistent RMF.
Unified treatment of the nuclear MF (particle-hole (ph)) and pairing
(particle-particle (pp)) correlations. Crucial for an accurate description of ground
states and properties of excited states in weakly bound nuclei.

ERMF [ρ̂, k̂, φm] = ERMF [ρ̂, φm] + Epair k̂],Epair [k̂] =
1

4
Tr [k̂∗V pp k̂] (2)

∗ Separable pairing interaction is used: < k|V 1S0 |k′
>= −Gp(k)p(k

′
).

Beyond MF approximation

Nuclear structure far from stability (i.e. spectra and transition probabilities..)
Restoration of the Hamiltonian symmetries that are broken on the MF level and fluctu-
ations of collective coordinates.
Collective Bohr Hamiltonian:

Ĥ = T̂vib + T̂rot + Vcoll (3)

with the vibration and the rotational kinetic energy and the collective potential energy,
terms.
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Binding Energies
Axial Symmetry
Triaxial Symmetry & Beyond Mean Field

Testing the global behavior of the model with two sets of effective interactions.
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Binding energies for A = 224− 264.
In most cases the r.m.s. error less than
900 keV.

Support the extension of the calculation to heavier nuclei.

Vaia D. Prassa Exploring the region of SuperHeavy nuclei with NEDF 6



Motivation
Introduction

Results
Summary & Conclusions

Binding Energies
Axial Symmetry
Triaxial Symmetry & Beyond Mean Field

Testing the global behavior of the model with two sets of effective interactions.

225 230 235 240 245 250 255 260 265
A

-4

-3

-2

-1

0

1

2

3

4

B
E

th
-B

E
ex

p (
M

eV
)

DD-PC1
DD-MME2

Binding energies for A = 224− 264.
In most cases the r.m.s. error less than
900 keV.

Support the extension of the calculation to heavier nuclei.

Vaia D. Prassa Exploring the region of SuperHeavy nuclei with NEDF 6



Motivation
Introduction

Results
Summary & Conclusions

Binding Energies
Axial Symmetry
Triaxial Symmetry & Beyond Mean Field

Testing the global behavior of the model with two sets of effective interactions.

225 230 235 240 245 250 255 260 265
A

-4

-3

-2

-1

0

1

2

3

4

B
E

th
-B

E
ex

p (
M

eV
)

DD-PC1
DD-MME2

Binding energies for A = 224− 264.
In most cases the r.m.s. error less than
900 keV.

Support the extension of the calculation to heavier nuclei.

Vaia D. Prassa Exploring the region of SuperHeavy nuclei with NEDF 6



Motivation
Introduction

Results
Summary & Conclusions

Binding Energies
Axial Symmetry
Triaxial Symmetry & Beyond Mean Field

Qa-values

Identification of SHE by their α-decay chains.

Qa = BE(parent) + BE(4He)− BE(daughter)

.
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Ta-values

The Viola-Seaborg-Sobiczewski (VSS) formula.

log10T1/2 = [aZ + b][Q/MeV ]−1/2 + cZ + hlog ,

a=1.66175, b=-8.5166, c=-0.20228, d=-33.9069
hlog = 0, even-even
hlog = 0.772, odd-even
hlog = 1.066, even-odd
hlog = 1.114, odd-odd
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Qa -values

Good agreement with the experimental data.
Maximum discrepancy 1MeV for 286114.

Prediction for 294120, Qa ≈12.4 MeV.
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Decay chain of 290116
PES- 3D MF

0+states - Beyond MF
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We presented theoretical results for SHE obtained with a self-consistent formalism
based on NEDF.
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