# Nuclear Weak Processes of Astrophysical Interest

Toshio Suzuki Nihon University



Primosten June. 10, 2011

ov-nucleus reactions

- •v-<sup>12</sup>C reactions and synthesis of light elements by supernova v
- •v-<sup>13</sup>C reactions; efffects of contamination of <sup>13</sup>C (1.1%) on v-<sup>12</sup>C reactions
- •v-induced reacions on <sup>16</sup>O
- <sup>40</sup>Ar (v, e<sup>-</sup>) <sup>40</sup>K solar v-reactions
- •v-<sup>56</sup>Fe •v-<sup>56</sup>Ni and synthesis of Mn
- $\circ$  e-capture on Ni isotopes in steller environments
- New shell model Hamiltonians with proper tensor components, which give successful description of spin responses in nuclei

New shell model Hamiltonians $\rightarrow$  success in betterdescription of spin modesin nuclei

- Important roles of tensor force
   → SFO (p, p-sd)
   (Suzuki-Fujimoto-Otsuka)
  - Shell evolutions
    GT transitions and magnetic moments
- Monopole-based universal interaction (VMU)





# Magnetic moments of p-shell nuclei



present = SFO Suzuki, Fujimoto, Otsuka, PR C67 (2003)

Space: up to 2-3 hw

SFO\*:  $g_A^{eff}/g_A = 0.95$ B(GT: <sup>12</sup>C)\_cal = experiment



#### Nucleosynthesis processes of light elements

Enhancement of <sup>11</sup>B and <sup>7</sup>Li in supernova explosions



**Cross sections for Supernova Neutrinos with temperature T** 



Effects of contamination of <sup>13</sup>C on inclusive v-<sup>12</sup>C reaction cross sections

<sup>12</sup>C 98.9% <sup>13</sup>C 1.1%

<sup>12</sup>C (v, e<sup>-</sup>) <sup>12</sup>Ng.s.  $\Delta M = 16.83 \text{ MeV}$ <sup>12</sup>C (v, e<sup>-</sup>) <sup>13</sup>Ng.s.  $\Delta M = 1.71 \text{ MeV}$ 

 $\sigma(^{13}C) > \sigma(^{12}C)$ 



Inclusive Clus Sections





#### Tensor Force and Shell Evolution

Otsuka, Suzuki, Fujimoto, Grawe, Akaishi, PRL 69 (2005)





SFO' :Δs1/2=-0.5 MeV

# <sup>11</sup>Li: Importance of halo & sd-shell mixing

<sup>12</sup>Be: Importance of sd-shell mixing

#### Relativistic Hartree-Bogoliubov Description of the Neutron Halo in <sup>11</sup>Li

J. Meng and P. Ring Physik-Department der Technischen Universität München, D-85748 Garching, Germany (Received 4 June 1996)



### •v-induced reactions on <sup>16</sup>O

• Modification of SFO Full inclusion of tensor force •p-sd: tensor-> $\pi$ + $\rho$ LS ->  $\sigma$ + $\rho$ + $\omega$ 

$$\begin{split} V = V_C + V_T + V_{LS} \\ V_T = V_\pi + V_\rho \\ V_{LS} = V_{\sigma + \omega + \rho} \end{split}$$

•sd: Kuo G-matrix
 T=1 monopole terms
 more repulsive
 → SFO-tls









T= temperature of supernova v

 $g_A^{eff}/g_A = 0.95$ 

CRPA: Kolbe, Langanke & Vogel, PR D66 (2002)



T= temperature of supernova v

CRPA: Kolbe, Langanke & Vogel, PR D66 (2002)

#### VMU= Monopole based Universal Interaction



```
^{40}Ar (v, e<sup>-</sup>) ^{40}K
```

```
SDPF-VMU
sd: SDPF-M (Utsuno et al.)
fp: GXPF1 (Honma et al.)
sd-pf: VMU
(sd)<sup>-2</sup> (fp)<sup>2</sup> : 2hw
```

B(GT) v-<sup>40</sup>Ar cross sections Solar v cross sections folded over <sup>8</sup>B v spectrum

 $B(GT) = \Sigma |\leq f| |f_q \sigma t_{\underline{i}}| |i \geq |^2 \quad f_q = 0.775 \text{ (Ormand et al.)}$ 





#### GT+IAS $E_e > 5 MeV : ICARUS$

Solar v cross sections folded over <sup>8</sup>B v spectrum

 $\begin{array}{ccccc} GT & IAS & GT+IAS \\ SDPF-VMU: 10.36 & 1.94*12.3\times10^{-43}cm^2 \\ WBT-\Delta E: & 10.18 & 1.94 & 12.1 \\ (WBT: & 2.65 & 1.94 & 4.6 \end{array} \right)$ 

Ormand et al,: 7.7<sup>++</sup> 3.8<sup>+</sup> 11.5 (PL B345, 343 (1995))

```
IAS: * C0+L0 \approx [(q^2-\omega^2)/q^2]^2 \times C0
+ C0 only
GT: E_1^5 + M1 + C_1^5 + L_1^5
++ E_1^5 only
```

(p,n) Bhattacharya et al., PR C80, 055501 (2009)

## • New shell-model Hamiltonians in fp-shell:

GXPF1: Honma et al., PR C65 (2002); C69 (2004)

**KB3:** Caurier et al., Rev. Mod. Phys. 77, 427 (2005)

- $\circ$  KB3G A = 47-52 KB + monopole corrections
- $\circ \quad \text{GXPF1} \qquad \text{A} = 47\text{-}66$
- Systematic reproduction of E(2+) and B(E2) in fpshell nuclei
- Spin properties of fp-shell nuclei are well described
- GT Strengths in Ni and Fe Isotopes and M1 strengths in fp-shell nuclei







#### **Synthesis of Mn in Population III Star**

<sup>20</sup>Ni(v,v'p)<sup>20</sup>Co, <sup>20</sup>Co(e<sup>+</sup>,v)<sup>20</sup>Fe(e<sup>+</sup>,v)<sup>20</sup>Mn



Astron. Astrophys. 416 (2004)

•Electron-capture rate in steller environment



$$\lambda = \frac{\ln 2}{6146(s)} \sum_{j} B_{j}(GT) \int_{\omega_{e}}^{\infty} \omega p(Q_{j} + \omega)^{2} F(Z, \omega) S_{e}(\omega) d\omega$$

$$Q_{j} = (M_{p}c^{2} - M_{d}c^{2} - E_{j}) / m_{e}c^{2}$$

$$T = T_{9} \times 10^{9} K, \qquad S_{e}(E_{e}) = \frac{1}{exp[(E_{e} - \mu_{e})/kT] + 1}$$

$$\rho Y_{e} = \frac{1}{\pi^{2}N_{A}} (\frac{m_{e}c}{\hbar})^{3} \int_{0}^{\infty} (S_{e} - S_{p}) p^{2} dp \qquad \mu_{p} = -\mu_{e}$$





# Summary

- **Solution** New shell model Hamiltonians with proper tensor interaction
- → new v-nucleus reaction cross sections in <sup>12</sup>C and <sup>16</sup>O Enhancement of production rate of <sup>7</sup>Li, <sup>11</sup>B Cross sections in <sup>16</sup>O: shell model ~ CRPA Contamination effect of <sup>13</sup>C ~ a few % sd-pf-VMU: <sup>40</sup>Ar (v,e<sup>-</sup>) <sup>40</sup>K for solar v
- v-<sup>56</sup>Fe cross sections (DAR), electron capture rates in <sup>58</sup>Ni and <sup>60</sup>Ni are well described by a new shell model Hamiltonian, GXPF1J.

 $v^{-56}Ni \rightarrow$  enhancement of production of Mn

#### Collaborators

M. Honma<sup>a</sup>, T. Yoshida<sup>b</sup>, S. Chiba<sup>f</sup>, T. Kajino<sup>b,d</sup>, T. Otsuka<sup>e</sup>, H. Mao<sup>g</sup>

<sup>a</sup>University of Aizu
<sup>b</sup>Department of Astronomy, University of Tokyo
<sup>d</sup>National Astronomical Observatory of Japan
<sup>e</sup>Department of Physics and CNS, University of Tokyo
<sup>f</sup>JAEA
<sup>g</sup>ENSPS, Strasbourg

**B.** Balantekin (Wisconsin) for the <sup>13</sup>C problem

# 70 77 80 88 90 99 100 110 111 120 ....

#### VMU= Monopole based Universal Interaction



 Important roles of tensor force
 → SFO (p, p-sd)
 (Suzuki-Fujimoto-Otsuka)

