The structure of halo nucleus ¹¹Li and

pair transfer reactions

F. Barranco and G. Potel

Sevilla University

R.A. Broglia

Milano University and INFN

The Niels Bohr Institute, Copenhagen

E. Vigezzi

INFN Milano

Advances in Nuclear Many-Body Theory, Primosten, 7-10June 2011

Outline

-The dynamic halo

- Microscopic description of two nucleon transfer reactions

Parity inversion in N=7 isotones

4

6

Ζ

8

J. Meng and P. Ring, PRL 77(1998)3963

SELF ENERGY RENORMALIZATION OF SINGLE-PARTICLE STATES: CLOSED SHELL

C. Mahaux, P.F. Bortignon, R.A. Broglia, C.H. Dasso and Mahaux, Phys. Rep. (1985)1

$$\begin{array}{c|c} \mathbf{e}_{1} \\ \mathbf{e}_{2} \\ \mathbf{e}_{1} \\ \end{array} = \frac{V^{2}}{e_{1} - (e_{2} + \hbar\omega_{\lambda})} \approx -\frac{V^{2}}{\hbar\omega_{\lambda}} \\ \mathbf{e}_{1} \\ \end{array} \\ \begin{array}{c} m_{\omega} \approx \left(1 + \frac{2N(0)V^{2}}{\hbar\omega_{\lambda}}\right) m \\ \hline m_{\omega} \approx 1.5m \\ \hbar\omega_{\lambda} \approx 1 \text{MeV} \\ N(0) \approx 3 \text{MeV}^{-1} \end{array} \end{array} \\ \begin{array}{c} \mathbf{e}_{1} \\ \end{array} \\ \begin{array}{c} \mathbf{e}_{2} \\ \mathbf{e}_{1} \\ \end{array} \\ \begin{array}{c} \mathbf{e}_{2} \\ \mathbf{e}_{1} \\ \end{array} \\ \begin{array}{c} \mathbf{e}_{1} \\ \end{array} \\ \begin{array}{c} V^{2} \approx 0.1 \\ N(0) \approx 3 \text{MeV}^{-1} \end{array} \end{array} \\ \begin{array}{c} \mathbf{e}_{1} \\ \hline V_{ind} \approx -0.2 \text{MeV} \end{array}$$

Effective, energy-dependent matrix (Bloch-Horowitz)

Main ingredients of our calculation

Fermionic degrees of freedom:

• s1/2, p1/2, d5/2 Wood-Saxon levels up to 150 MeV (discretized continuum) from a standard (Bohr-Mottelson) Woods-Saxon potential

Bosonic degrees of freedom:

• 2+ and 3- QRPA solutions with energy up to 50 MeV; residual interaction: multipole-multipole separable with the coupling constant tuned to reproduce E(2+)=3.36 MeV and $0.6<\beta_2<0.7$

Admixture of d_{5/2} x 2⁺ configuration in the 1/2⁺ g.s. of ¹¹Be is about 20%

A dynamical description of two-neutron halos

Good agreement between theory and experiment concerning energies and spectroscopic factors

Spectroscopic factors from (12Be,11Be+ γ) reaction to ½⁺ and ½- final states: S [1/2-] = 0.37±0.10 S[1/2+]= 0.42±0.10

New result for S[1/2+] from 11Be(d,p)12Be 0.28^{+0.03} -0.07

			The	ory
		Expt.	Particle vibration	Mean field
	$E_{s_{1/2}}$	-0.504 MeV	-0.48 MeV	~0.14 MeV
	$E_{p_{1/2}}$	-0.18 MeV	-0.27 MeV	-3.12 MeV
¹¹ Be ₇	$E_{d_{SD}}$	1.28 MeV	$\sim 0 \text{ MeV}$	~2.4 MeV
	$S[1/2^+]$	0.65-0.80 [19]	0.87	1
		0.73±0.06 [20]		
		0.77 [21]		
	<i>S</i> [1/2 ⁻]	0.63±0.15 [20]	0.96	1
		0.96 [21]		1
	<i>S</i> [5/2 ⁺]		0.72	1
	S_{2n}	-3.673 MeV	-3.58 MeV	-6.24 MeV
${}^{12}_{4}\text{Be}_{8}$	s^2, p^2, d^2		48%, 29%, 48%	0%, 100%, 0%
	$S[1/2^+]$	0.42±0.10 [7]	0.31	0
	S[1/2 ⁻]	0.37±0.10 [7]	0.57	2

Theoretical calculation for ¹¹Li

Table 2. RPA wave function of the collective low-lying quadrupole phonon in ¹¹Li, of energy $E_{2+} = 5.05$ MeV, and leading to the most important contribution to the induced interaction in fig. 1, II. All the listed amplitudes refer to neutron transitions, except for the last column. We have adopted the self-consistent value ($\chi_2 = 0.013 \,\text{MeV}^{-1}$) for the coupling constant. The resulting value for the deformation parameter is $\beta_2 = 0.5$.

	$1p_{3/2}^{-1}1p_{1/2}$	$2s_{1/2}^{-1}5d_{3/2}$	$1p_{1/2}^{-1}6p_{3/2}$	$2s_{1/2}^{-1}3d_{5/2}$	$2s_{1/2}^{-1}5d_{5/2}$	$1p_{3/2}^{-1}1p_{1/2}(\pi)$
$X_{\rm ph}$	0.824	0.404	0.151	0.125	0.126	0.16
$Y_{\rm ph}$	0.119	0.011	-0.002	-0.049	-0.011	0.07

Table 3. RPA wave function of the strongest low-lying dipole vibration of ¹¹Li, ($E_{1-} = 0.75$ MeV), and contributing most importantly to the pairing induced interaction (fig. 1, II). All the listed amplitudes refer to neutron transitions. We have used the value $\chi_1 = 0.0043$ MeV⁻¹ for the isovector coupling constant in order to get a good agreement with the experimental findings. To be noted that this value coincides within 25% close to the selfconsistent value of 0.0032 MeV⁻¹. The resulting strength function (cf. fig. 2(a)) integrated up to 4 MeV gives 7% of the Thomas-Reiche-Kuhn energy weighted sum rule, to be compared to the experimental value of 8% [38].

	$1p_{1/2}^{-1}2s_{1/2}$	$1p_{1/2}^{-1}3s_{1/2}$	$1p_{1/2}^{-1}4s_{1/2}$	$1p_{1/2}^{-1}1d_{3/2} \\$	$1p_{3/2}^{-1}5d_{5/2}$	$1p_{3/2}^{-1}6d_{5/2}$	$1p_{3/2}^{-1}7d_{5/2}$
$X_{\rm ph}$	0.847	-0.335	0.244	0.165	0.197	0.201	0.157
$Y_{\rm ph}$	0.088	0.060	0.088	0.008	0.165	0.173	0.138

		Exp.	Theory		
			particle-vibration +Argonne	mean field	
$^{10}_{3}\mathrm{Li}_{7}$	s	$0.1-0.2 { m MeV}$	0.2 MeV (virtual)	~ 1 MeV (virtual)	
(not bound)	р	$0.5\text{-}0.6~\mathrm{MeV}$	0.5 MeV (res.)	-1.2 MeV (bound)	
	\mathbf{S}_{2n}	¹ 0.369 MeV	$0.33~{ m MeV}$	$2.4~{ m MeV}$	
$^{11}_{3}\mathrm{Li}_{8}$	$^{\rm s^2,p^2}$	50% , $50%$	41% , $59%$	0% , $100%$	
(bound)	$\langle r^2 \rangle^{1/2}$	$3.55 {\pm} 0.1 \text{ fm}$	3.9 fm		
	Δp_{\perp}	$48{\pm}10~{\rm MeV/c}$	$55~{ m MeV/c}$		

Correlated halo wavefunction

Uncorrelated

Relativistic HB calculation

J. Meng and P. Ring, PRL 77(1998)3963

How to probe the particle-phonon coupling? Test the microscopic correlated wavefunction with phonon admixture

We will try to draw information about the halo structure of ¹¹Li from the reactions
$${}^{1}H({}^{11}Li,{}^{9}Li){}^{3}H$$
 and ${}^{1}H({}^{11}Li,{}^{9}Li^{*}(2.69 \text{ MeV})){}^{3}H$ (I. Tanihata *et al.*, Phys. Rev. Lett. **100**, 192502 (2008))

Schematic depiction of $^{11}\mathrm{Li}$

$$|\tilde{0}\rangle = |0\rangle + 0.7 |(ps)_{1^{-}} \otimes 1^{-}; 0\rangle + 0.1 |(sd)_{2^{+}} \otimes 2^{+}; 0\rangle$$

$$|0\rangle = 0.45|s_{1/2}^2(0)\rangle + 0.55|p_{1/2}^2(0)\rangle + 0.04|d_{5/2}^2(0)\rangle$$

Probing ¹¹Li halo-neutrons correlations via (p,t) reaction

PRL 100, 192502 (2008)

PHYSICAL REVIEW LETTERS

week ending 16 MAY 200

Measurement of the Two-Halo Neutron Transfer Reaction ¹H(¹¹Li, ⁹Li)³H at 3A MeV

I. Tanihata,* M. Alcorta,[†] D. Bandyopadhyay, R. Bieri, L. Buchmann, B. Davids, N. Galinski, D. Howell, W. Mills, S. Mythili, R. Openshaw, E. Padilla-Rodal, G. Ruprecht, G. Sheffer, A. C. Shotter, M. Trinczek, and P. Walden *TRIUMF*, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada

> H. Savajols, T. Roger, M. Caamano, W. Mittig,[‡] and P. Roussel-Chomaz GANIL, Bd Henri Becquerel, BP 55027, 14076 Caen Cedex 05, France

> R. Kanungo and A. Gallant Saint Mary's University, 923 Robie St., Halifax, Nova Scotia B3H 3C3, Canada

> > M. Notani and G. Savard ANL, 9700 S. Cass Ave., Argonne, Illinois 60439, USA

I. J. Thompson LLNL, L-414, P.O. Box 808, Livermore, California 94551, USA (Received 22 January 2008; published 14 May 2008)

The cross section for transitions to the first excited state (Ex = 2.69 MeV) is shown also in Fig. 3. If this state were populated by a direct transfer, it would indicate that a 1⁺ or 2⁺ halo component is present in the ground state of ¹¹Li($\frac{3}{2}^{-}$), because the spin-parity of the ⁹Li first excited state is $\frac{1}{2}^{-}$. This is new information that has not yet been observed in any of previous investigations. A compound

TABLE I. Optical potential parameters used for the present calculations.

	V MeV	r_V fm	a_V fm	W MeV	W_D MeV	r_W fm	a_W fm	V _{so} MeV	r _{so} fm	a _{so} fm
$p + {}^{11}\text{Li}$ [10]	54.06	1.17	0.75	2.37	16.87	1.32	0.82	6.2	1.01	0.75
$d + {}^{10}\text{Li}$ [11]	85.8	1.17	0.76	1.117	11.863	1.325	0.731	0		
t + ⁹ Li [12]	1.42	1.16	0.78	28.2	0	1.88	0.61	0		

Calculation of absolute two-nucleon transfer cross section by finite-range DWBA calculation

simultaneous and successive contributions

$$T^{(1)}(j_i, j_f) = 2 \sum_{\sigma_1 \sigma_2} \int d\mathbf{r}_{fF} d\mathbf{r}_{b1} d\mathbf{r}_{A2} [\Psi^{j_f}(\mathbf{r}_{A1}, \sigma_1) \Psi^{j_f}(\mathbf{r}_{A2}, \sigma_2)]_0^{0*} \chi_{bB}^{(-)*}(\mathbf{r}_{b1})$$
$$\times v(\mathbf{r}_{b1}) [\Psi^{j_i}(\mathbf{r}_{b1}, \sigma_1) \Psi^{j_i}(\mathbf{r}_{b2}, \sigma_2)]_0^0 \chi_{aA}^{(+)}(\mathbf{r}_{aA})$$

$$\begin{split} T^{(2)}_{succ}(j_{i},j_{f}) &= 2 \sum_{K,M} \sum_{\substack{\sigma_{1}\sigma_{2} \\ \sigma_{1}'\sigma_{2}'}} \int d\mathbf{r}_{fF} d\mathbf{r}_{b1} d\mathbf{r}_{A2} [\Psi^{j_{f}}(\mathbf{r}_{A1},\sigma_{1})\Psi^{j_{f}}(\mathbf{r}_{A2},\sigma_{2})]_{0}^{0*} \\ &\times \chi^{(-)*}_{bB}(\mathbf{r}_{bB}) v(\mathbf{r}_{b1}) [\Psi^{j_{f}}(\mathbf{r}_{A2},\sigma_{2})\Psi^{j_{i}}(\mathbf{r}_{b1},\sigma_{1})]_{M}^{K} \\ &\times \int d\mathbf{r}_{fF}' d\mathbf{r}_{b1}' d\mathbf{r}_{A2}' G(\mathbf{r}_{fF},\mathbf{r}_{fF}') [\Psi^{j_{f}}(\mathbf{r}_{A2},\sigma_{2}')\Psi^{j_{i}}(\mathbf{r}_{b1}',\sigma_{1}')]_{M}^{K} \\ &\times \frac{2\mu_{fF}}{\hbar^{2}} v(\mathbf{r}_{f2}') [\Psi^{j_{i}}(\mathbf{r}_{A2}',\sigma_{2}')\Psi^{j_{i}}(\mathbf{r}_{b1}',\sigma_{1}')]_{0}^{0} \chi^{(+)}_{aA}(\mathbf{r}_{aA}') \end{split}$$

$$T^{(1)}(j_{i}, j_{f}) = 2 \sum_{\sigma_{1}\sigma_{2}} \int d\mathbf{r}_{fF} d\mathbf{r}_{b1} d\mathbf{r}_{A2} [\Psi^{j_{f}}(\mathbf{r}_{A1}, \sigma_{1})\Psi^{j_{f}}(\mathbf{r}_{A2}, \sigma_{2})]_{0}^{0*} \chi_{bB}^{(-)*}(\mathbf{r}_{bB})$$

$$\times v(\mathbf{r}_{b1}) [\Psi^{j_{i}}(\mathbf{r}_{b1}, \sigma_{1})\Psi^{j_{i}}(\mathbf{r}_{b2}, \sigma_{2})]_{0}^{0} \chi_{aA}^{(+)}(\mathbf{r}_{aA}),$$

$$T^{(2)}_{succ}(j_{i}, j_{f}) = 2 \sum_{K,M} \sum_{\substack{\sigma_{1},\sigma_{2} \\ \sigma_{1}',\sigma_{2}'}} \int d\mathbf{r}_{fF} d\mathbf{r}_{b1} d\mathbf{r}_{A2} [\Psi^{j_{f}}(\mathbf{r}_{A1}, \sigma_{1})\Psi^{j_{f}}(\mathbf{r}_{A2}, \sigma_{2})]_{0}^{0*}$$

$$\times \chi_{bB}^{(-)*}(\mathbf{r}_{b1}) v(\mathbf{r}_{b1}) [\Psi^{j_{f}}(\mathbf{r}_{A2}, \sigma_{2})\Psi^{j_{i}}(\mathbf{r}_{b1}, \sigma_{1})]_{M}^{K}$$

$$\times \int d\mathbf{r}'_{fF} d\mathbf{r}'_{b1} d\mathbf{r}'_{A2} G(\mathbf{r}_{fF}, \mathbf{r}'_{fF}) [\Psi^{j_{f}}(\mathbf{r}'_{A2}, \sigma'_{2})\Psi^{j_{i}}(\mathbf{r}'_{b1}, \sigma'_{1})]_{M}^{K}$$

$$\times \frac{2\mu_{fF}}{\hbar^{2}} v(\mathbf{r}'_{f2}) [\Psi^{j_{i}}(\mathbf{r}'_{A2}, \sigma'_{2})\Psi^{j_{i}}(\mathbf{r}'_{b1}, \sigma'_{1})]_{0}^{0} \chi_{aA}^{(+)}(\mathbf{r}'_{aA}),$$

$$T^{(2)}_{NO}(j_{i}, j_{f}) = 2 \sum_{K,M} \sum_{\substack{\sigma_{1}',\sigma_{2}' \\ \sigma_{1}',\sigma_{2}'}} \int d\mathbf{r}_{fF} d\mathbf{r}_{b1} d\mathbf{r}_{A2} [\Psi^{j_{f}}(\mathbf{r}_{A1}, \sigma_{1})\Psi^{j_{f}}(\mathbf{r}_{A2}, \sigma_{2})]_{0}^{0*}$$

$$\times \chi_{bB}^{(-)*}(\mathbf{r}_{bb}) v(\mathbf{r}_{b1}) [\Psi^{j_{f}}(\mathbf{r}_{A2}, \sigma_{2})\Psi^{j_{i}}(\mathbf{r}'_{b1}, \sigma'_{1})]_{0}^{0} \chi_{aA}^{(+)}(\mathbf{r}'_{aA}),$$

$$T^{(2)}_{NO}(j_{i}, j_{f}) = 2 \sum_{K,M} \sum_{\substack{\sigma_{1}',\sigma_{2}' \\ \sigma_{1}',\sigma_{2}'}} \int d\mathbf{r}_{fF} d\mathbf{r}_{b1} d\mathbf{r}_{A2} [\Psi^{j_{f}}(\mathbf{r}_{A1}, \sigma_{1})\Psi^{j_{f}}(\mathbf{r}_{A2}, \sigma_{2})]_{0}^{0*}$$

$$\times \chi_{bB}^{(-)*}(\mathbf{r}_{bb}) v(\mathbf{r}_{b1}) [\Psi^{j_{f}}(\mathbf{r}_{A2}, \sigma_{2})\Psi^{j_{i}}(\mathbf{r}'_{b1}, \sigma_{1})]_{M}^{K}}$$

$$\times [\Psi^{j_{i}}(\mathbf{r}'_{A2}, \sigma'_{2})\Psi^{j_{i}}(\mathbf{r}'_{A2}, \sigma'_{2})\Psi^{j_{i}}(\mathbf{r}'_{A1}, \sigma_{1})]_{M}^{K}$$

$$\times [\Psi^{j_{i}}(\mathbf{r}'_{A2}, \sigma'_{2})\Psi^{j_{i}}(\mathbf{r}'_{A2}, \sigma'_{2})\Psi^{j_{i}}(\mathbf{r}'_{A1}, \sigma'_{A1})]_{M}^{K}}$$

$$\times [\Psi^{j_{i}}(\mathbf{r}'_{A2}, \sigma'_{2})\Psi^{j_{i}}(\mathbf{r}'_{A1}, \sigma'_{A1})]_{M}^{0}$$

$$\times [\Psi^{j_{i}}(\mathbf{r}'_{A2}, \sigma'_{2})\Psi^{j_{i}}(\mathbf{r}'_{A1}, \sigma'_{A1})]_{M}^{0}}$$

$$\times [\Psi^{j_{i}}(\mathbf{r}'_{A2}, \sigma'_{2})\Psi^{j_{i}}(\mathbf{r}'_{A1}, \sigma'_{A1})]_{M}^{K}}$$

	$\sigma(^{11}\text{Li}(\text{gs}) \rightarrow {}^{9}\text{Li}(i)) \text{ (mb)}$		
i	ΔL	Theory	Experiment
gs (3/2 ⁻)	0	6.1	5.7 ± 0.9
2.69 MeV (1/2 ⁻)	2	0.5	1.0 ± 0.36

G. Potel et al., PRL 105 (2010) 172502

Decomposition into successive and simultaneous contributions

Convergence of the calculation of successive transfer

Channels c leading to the first $1/2^-$ excited state of ⁹Li

summary and conclusions

- A recent two-neutron transfer experiment (¹H(¹¹Li,⁹Li)³H, Tanihata et al., 2008) provided new insight in the structure of ¹¹Li.
- We show that the differential cross section is quantitatively consistent with the s-p mixing in the ground state of ¹¹Li already predicted (see e.g. Barranco et al. 2001).
- We found hat the differential cross section for the excitation of the first $1/2^-$ (2.69 MeV) provides evidence of phonon-mediated pairing between the two halo neutrons of ¹¹Li.

A recent analysis of various two-neutron transfer reactions Based on second order DWBA reproduces absolute cross sections

G. Potel et al., nucl_th/ 0906.4298