Pairing correlations tested in heavy-ion
induced reactions: two-particle transfer and
two-particle break-up reactions

Outline

* pairing correlation and correlations in space

- systems at the drip lines

* role and treatment of continuum states

* reaction models for two-particle break-up and
two-particle transfer reactions



A nuclear squid: Diabolic pair transfer in rotating nuclei
Nikam, R. S.; Ring, P.; Canto, L. F.
Physics Letters B, Volume 185, p. 269-274, 1987
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How to use dynamics to study pairing correlations?

The main road is clearly provided by the study of those
processes where a pair of particles in involved, e.g.
transferred from/to another nucleus (two-particle transfer)
or ejected onto the continuum (two-particle break-up).

Unfortunately, the situation is different, for example, from
low-energy one-step Coulomb excitation, where the
excitation probability is directly proportional to the

B(EM) values. Here the reaction mechanism is much more
complicated and the possibility of extracting spectroscopic
information on the pairing field is not obvious. The situation

is actually more complicated even with respect to other
processes (as inelastic nuclear excitation) that may need to
be treated microscopically, but where the reaction
mechanism is somehow well established.



It is often assumed that the cross section for two-
particle transfer just scale with the square of the
matrix element of the pair creation (or removal)
operator

P+ - ZJ [G+G+]OO

For this reason the easiest way to define and
measure the collectivity of pairing modes is to
compare with single-particle pair transition
densities and matrix elements to define some
"pairing” single-particle units and therefore
“pairing” enhancement factors.
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Even without entering into the details of the
reaction mechanism, one should at least take into
account the Q-value effect

Keeping fixed any other parameter, the
probability for populating a definite final channel
depends on the Q-value of the reaction. The
dependence is very strong in the case of heavy-
ion induced reactions, weaker in the case of light
ions.

In the specific case of L=0 two-neutron
transfer, the optimal Q-value is zero. This can
modify the cross-section distribution with
respect to the strength distribution
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But the two-particle transfer process in not sensitive
to just the pair matrix element. We have to look at
the radial dependence, which is relevant for the
reaction mechanism associated with pair transfer
processes.



Comparison with pure single-particle configurations

pair transition density

p"p(r.r)=x¥ (ro)=<0|c(r&jc(ro)|v>

3
410

-3\
110 [ N\

0.0

b)

0.0

I l
210 by

Giant pairing vibration

N

/

/

| l

(1g9/2)?

l/
2.0

\
| T
4.0 .

r (fm)
(1h11/2)2

Lotti, Vitturi etal



dp (r,r)

0.6

0.5

0.4

0.3

0.2

0.0

0.1}

180

(251/2)2

0.8 (1d5/2)? + 0.6(2s1/2)?

—

- (1d5/2)2—

0 1

ER2 L



(2f5/2)2

5* o O
L
> O

[P(ry,r;)|% as a B anEaae
function of r, | | OBS: mixing of
for fixed r, COI’\figUf‘GTiOHS

with opposite
parity

@ position of particle 1 P s 5 4 2 0 s e & w



6pP(er)

y Catara etal, 1984
R
206Pb
R R R
o0 5 10 Rlim) 0 5 10 Rifm). 40 5 10_Rifm)

- 10+

Conf.mixing -

2 - -
(2p1/2)0 (6 comp.)

a) b) C)

(3pl/2)? (25/2)2 Correlated g.s.




6pP(er.)

Pillet, Sandulescu, Schuck



Interesting problem:
how is changed the picture as we move closer
or even beyond the drip lines?
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Other example: the case of lLi
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R {fm)
K.Hagino, H. Sagawa, and P. Schuck,
J. of Phys. G37(‘10) 064040.



For it is
mandatory to include in the models the positive energy
part of the spectrum. If one wants to still use the same
machinary used with bound states, the most popular
approach is the But the
discretization MUST go in parallel in a consistent way
both in the structure and in reaction parts.



All discretization procedures are equivalent as long
as a full complete basis is used. In practice all
procedudes contain a number of parameters and
criteria, that make not all procedures equally
applicable in practical calculations. Computational
constraints may in fact become a severe problem.

As possibilities we can consider

-diagonalization in a basis given by wave functions
-impose boundary conditions in a BOX

‘the case of
(CDCC)

* Gamow states (complex energies)



Case of non-resonant continuum
(Woods-Saxon single-particle potential in a HO basis)
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How does the continuum discretization work
in break-up processes involving one particle in
the continuum in the final stage?
Couplings are strong and first-order
perturbation may not be sufficient



Simple modelling of one-particle halo break-up

Single particle, initially moving in a one-dimensional
Woods-Saxon potential V,, perturbed by a
time-dependent interaction V(x,t), assumed to be of

gaussiam shape

V(x,1t)=V exp(-t2/0;) exp( -(x-Xp)?/0,)

X
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Obs: simulation of the nuclear field generated
in a collision with a heavy partner
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The particle is

assumed to be initially

in one of the bound states
Dy (x) of Vy

potential, wavefunctions
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Exact full evolution of the system obtained
by solving the time-dependent Schroedinger
equation

ihd W(x,t)/at-= [Hy + V(x,1)] P(x,1)
with

Ho = -(h?/2u) d?/dx? + Vy(x)



Coupling with excitation to the continuum
(still with some final probability of being bound):
partial break-up

Bound States

Vo =-60 MeV R= 41n a=05 fm

201 : i

potential, wavefunctions
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Q-value final distribution
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The same problem can be approached in
the "'standard’’ coupled-channel formalism
where the Schrodinger equation is solved by
expanding the total wave function into a stationary
basis

W(x,1)=2y an(t) On(X)

and solving the coupled system of equations for the
amplitudes ay(t)

ihday(1)/dt=3 , exp(-i(Ex-Ep)t) <®@y| V (X,1)|@y> ay(t)



In cases where the inclusion of continuum states
are essential in the proper description of the
evolution of the system, one is naturally led

to the procedure of energy discretization:

we will now slice the continuum

and compare the different approximations

to the full exact solution



V(x) (MeV)

Slicing the continuum (in steps of AE)
and averaging within each band (CDCC)

continuum states discretized bands
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Case of partial
break-up
starting from a
weakly-bound
orbital (N=5)
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distribution
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Moving from the case of just one particle in the continuum
to cases with more particles in the continuum

Simple test cases in structure
Two valence particles, moving in a one-dimensional
Woods-Saxon potential V,, interacting via a residual
density-dependent short-range attractive interaction.
Modelling a drip-line system, one can choose the Fermi
surface in such a way that there are no available bound
states, and the two unperturbed particles must be in the
continuum. The residual interaction
V(x1.X2) = Vo 8(x1-%5) p((X1+X2)/2)/pg
can be chosen in such a way that the final correlated wave
function is however bound. Such a system is normally
called "Borromean”
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Diagonalization in a box

WS single-particle states obtained imposing
boundary conditions at a box (R=20 fm)

Woods Saxon in a Box
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Correlated energy of the two-particle system
(as a function of the box radius)
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The value of the binding energy is converging
(with some oscillations) to the final value
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Energy already practically correct with a box
of 15 fm, but what about the wave function?
In particular, how does it behave in the tail?



Radial dependence dp(x,x)

Woods-Saxon in a BOX
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Correlated
two-particle
wave-function
expanded over
discretized
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positive energy
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Spatial Correlation in the 2body Wave Function

Woods-Saxon in a BOX
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Other option: diagonalization in a harmonic oscillator basis

Woods-Saxon 1D Potential
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WS single-particle states obtained from
Harmonic Oscillator basis (N=10)
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Two-body correlated energies: Harmonic Oscillator basis
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The value of the binding energy is converging
(with some oscillations) to the final value
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The radial dependence, however ... Y(x,x)

Harmonic Basis (E_= 50 MeV)
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Correlated
two-particle
wave-function
expanded over
discretized
two-particle
positive energy
states
(amplitudes **2)
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I move now to considering two classes of reactions
where pairing correlations play a dominant role and
the continuum affects (directly or indirectly) not
simply one, but two particles:

* Two-particle transfer reaction

*Break-up of a two-particle (Borromean)
halo system



Two-particle transfer reactions



The classical example:
Sn+5Sn
(superfluid on superfluid)

Ge /Gy

Oge / O

de /dQ [mb/sr]

205n 28, E\=4.55MeViu

1 T T T T T T T T 1 1
E e, ELASTlc-i
o N, ]
; e . ﬂZSn‘ :
L )
N e T 11
F Mg -H6gp|
ol ,.o@e o sl fu+ln
10 $ <10
AR S RUCE . [
b oo Ml | +2n
0E 410
N N
[ s “ s +3n
: A}{' T i "6Sn : +4n
] I I i i 1 1 1 L
100 120 140 160 180 Qcy



y
do/dQd,)
100 - R—&
L v EF
10 N 3
11_
01kt L1 | .
0123456 »4N.AZ
\f’/
1.0+ 4 n
S~ "\
AN
RN
0.1 \ n
Pin P
0.01 | P, P—2
EF
0.001 I
| w(Py)?
4n 3n
0.0001 | | | i | | || | | | |
1.2 1.3 1.4 4 1.5 1.6 dol{Rnin!

distance of
closest approach

A way to define a pairing
“enhancement” factor, by
plotting transfer
probabilities not as function
of the scattering angle, but
as function of the distance
of closest approach of the
corresponding classical
trajectory

configurations in multi-nucleon transfer

(1]} [(nlj).e (nlj)|]J:; [¢2N]JT ® [¢2N]J1“ @
(nlj),, [(nl}).e (nlj)n]J;

(nijh @ Aiye

i (nlj)
(nlj} ®

(nlj) ® ISl

("Ii)“/' (nlj) — (nlj), % k=1..4
Pl 2
0 o

ON +1N +2N +3N +4N

:
|



"25n(129Sn,Sn)Sn

+ :
Pf E =4.25 (=), £.55 (=) and 48 (o) MeV/uy
1
05
}_
01 P =cye 28R
0.05r- =¥ o
i d chze‘ZGzR
B
001 \
2
P
10°
P, =P,-P,-0,7
0“0 ] 1 N\ 1

1 1 L .
130 135 140 145 150 155 do 1fm)



Transfer function Py,

107

10

107

| TI"'I‘I’] T P 1IN

—  p— Ay e W -
=

~lp-Transfer 3
..*2p .
...3p -
-hp E
-5p .

| LI![l!]l ’{ 1I]!!Hl 1 I!l]lll]

1.30 1.35




Reaction mechanism and models for two-particle
transfer processes

Large number of different approaches, ranging from
macroscopic to semi-microscopic and to fully
microscopic. They all try to reduce the actual
complexity of the problem, which is a four-body
scattering (the two cores plus the two transferred
particles).



Note that pairing correlations should effect O+ states,

but these are often overwhelmed by other multipole states
(only for light ions at forward angles one excites selectively
O+ states)



Note that pairing correlations should effect O+ states,
but these are often overwhelmed by other multipole states
(only for light ions at forward angles one excites selectively

O+ states)

Example: The excited states in 1145n are of proton character

at Z=50 closed shell

125

! HZCd

|

(*He,n)"*sn

i}

203 |

285



Example:
predicted total cross sections in
1205n(p,1)!185Sn* reaction
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Models for two-particle transfer reactions



Example
Semi-microscopic approach

Reaction mechanism: one-step di-neutron (cluster)
transfer

Microscopy: Formfactor obtained by double-folding the
microscopic pair densities of initial and final states
with some nucleon-nucleon interaction

or

Simple folding of microscopic pair density in the target
with the one-body mean field of the projectile



Macroscopic approach

Complete parallelism with inelastic excitation of collective
surface modes

Reaction mechanism: one step transfer produced by a new
generalized pair field

F(r)= BpdU/dA = Bp (R/3A) dU/dr

Where the "deformation” parameter [p is the pair-

transfer matrix element and contains all the microscopy of
the approach

Very simple, appropriate for situations with many other
coupled open channels
Problem: recoil? Relative cross sections?



Fully microscopic approach © (cf. talk by Vigezzi)

Reaction mechanism: Sequential two-step process (each
step transfers one particle)

Microscopy: Pairing enhancement comes from the
coherent interference of the different paths through
the different intermediate states in (a-1) and (A+1)
nuclei, due to the correlations in initial and final wave
functions

Building blocks: single-particle formfactors and wf's

Problems: quantal calculations rather complex (taking
into account full recoil), semiclassical more feasible
(but approximate treatment of recoil)
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Example
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Basic blocks: single particle formfactors
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transfer probability
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Basic problem:

how is changed the picture as we move closer
or even beyond the drip lines?
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Data from GANIL, Navin etal, 2011
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Extremely difficult o extract the fundamental 62/c1 ratio
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Sensitivity to

the pairing function
in HLi
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P2: 31% Of (51/2)2
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Systems
closer to the

N NN BB -E-E-E-E-E-E-N-]

one-particle drip lines
transfer to ‘ P '
canster © (intermediate
bound and
e e e e e unbound

states)

A A+2

Example
IA=2> = { =X [a*a‘l,+ J dE X(E) [a*(E)a*(E)],} |A>



- Systems

at the drip
lines
(intermediate
unbound
states)

one-particle
transfer process

\

/ ’ A+l =
A+2

|A=2>= | dE X(E) [a*(E)a*(E)], |A>

Two-particle trasfer will proceed mainly by
constructive interference of successive transfers
through the (unbound) continuum intermediate states



one-particle
transfer process

Discretized
continuum
——— \
AW
/ A+l ——
A+2
A

The integration over the continuum intfermediate states
can becomes feasible by continuum discretization:

but how many paths should we include? Thousands or few.
for example only the resonant states?



Two-particle break-up



Break-up of a two-particle halo system is a rather complex
4-body process. To make it simpler let us consider an
one-dimensional case

(Hagino, Vitturi, Sagawa, Perez Bernal.
Cf also Denis Lacroix)



One-dimensional three-body model ‘w X

Two interacting neutrons in a one-dimensional potential well:

TLQ d2 'hQ d2
H=——_4V _ v
dex% T (ml) dex% + (372) + 'Unn($1,x2)

density-dependent contact interaction:

1
AN _
’Unn(fva Zr ) = -9 (1 1+ €(|a:|—R)/a

> §(z — ')

lzw WgS(xlan) — Z ann’wnn/(xlan)
-20:— \ / ] — Wnn’(xlaZUQ) X S[¢n($1)¢n/(5’32)]
30 \/ . x|S = 0)

V(x) (MeV)

I \/ S = 0 state: symmetric for the
_5 1 | | 1 | | .
50. - spatial part of wf

*n, n’: the same parity



Ground state properties

two-particle density: |Wgs(z1,22) &
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Nuclear Breakup Process

(one-body) external field
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Time-dependent two-particle Schroedinger equation:

_ 0
ergw(xlvavt) — [H + Vext(3317$27t)]w(3717$27t)

Vext(ml, &5 t) — Z Ve e—tz/Qage_(xi-mo)Q/Qag

i=1,2

V,=3MeV, 6,=2.1 hbar/MeV, x, =0



The perturbing interaction (that produces the
break-up) is a one-body field (i.e. acting individually
on each of the two particles). The enhanced two-
particle break-up originates from the correlation in
the two-particle wave function, and not from the
reaction mechanism



two-particle density at =+, .
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A x2
time evolution
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¢t =-400 fm
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Time evolution (correlated case)

ct =300 fm
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