Cluster structures and Hoyle-analog states in ¹¹B

T. Yamada

Cluster structures and Hoyle-analog states in ¹¹B

- 1. Introduction ¹²C Hoyle state (2nd 0⁺) ¹⁶O structure
- 2. ¹¹B= α + α +t structure (¹³C=3 α +n)
- 3. Summary

Introduction

- Cluster picture as well as mean-field picture is important viewpoint to understand structure of light nuclei.
- Structure of light nuclei

Cluster states + Shell-model-like states Microscopic cluster models, AMD,.... ⁸Be= 2α , ¹²C= 3α , ¹⁶O=¹²C+ α , 4 α , ...

• α-condensate states in 4n nuclei:

 α -gas-like state described by a product state of α -particles, all with their c.o.m. in (0S) orbit.

Typical states:

¹²C: Hoyle state (2nd 0⁺)

Tohsaki, Horiuchi, Schuck, Roepke, Phy. Rev. Lett.87 (2001) Funaki et al., PRC (2003) Yamada et al., EPJA (2005), Matsumura et al.,NPA(2004)

Overlap 3α GCM **(Brink wf exact 0**⁺₂ state)

Uegaki et al, PTP57(1977)

α-gas-like nature of Hoyle state

Kamimura et al., (1977): 3lpha RGM

Uegaki et al, PTP57(1977): 3lpha GCM

The 0⁺₂ state has a distinct clustering and has **no definite spatial configuration**.

Chernykh, Feldmeir et al., PRL98(2007)

UCOM + FMD, 3α RGM

About **55 components** of the Brink-type wave functions are needed to reproduce the full RGM solution for the Hoyle state.

Tohsaki, Horiuchi, Schuck, Roepke, PRL87 (2001)

THSR wave function: α-condensate-type cluster wf **1 base THSR** :

 $\left|\left\langle \Phi_{3\alpha}^{THSR} \right| \text{ exact } \mathbf{0}_{2}^{+} \text{ state } (3\alpha \text{RGM}) \right\rangle\right|^{2} \approx 99\%$

Funaki et al., PRC67, (2003) 5

THSR wave function Tohsaki, Horiuchi, Schuck, Roepke, PRL (2001)

Condensed into the lowest orbit

 $(0S)^{3}_{a}$

 $\Phi_{3\alpha}(B) = \mathscr{F}\left\{\prod_{i=1}^{3} \left[\exp\left(-\frac{2}{B^2} \overline{X_i}^2\right) \phi(\alpha_i)\right]\right\}$

 $(0S)^{3}_{\alpha}$

Funaki et al., PRC (2003)

$$\left| \left\langle \Phi_{3\alpha}^{\text{THSR}}(B) \right| \exp\left(\frac{1}{2} \exp\left$$

Deformation $(B_x, B_y, B_z) \rightarrow 0.999$

 $R \approx 3.8$ fm: alpha-gas-like structure

Occupation probabilities of *a*-orbits in ¹²C

<u> α -density distribution and α -momentum distribution</u> in ¹²C

Compact (0_1^+) vs. Dilute (0_2^+)

 0_2^+ state: δ function-like Similar to dilute atomic cond.

Yamada & Schuck EPJA26 (2005) with 3α OCM wf

Cluster-model analyses of ¹⁶O

• α + ¹²C OCM

Y. Suzuki, PTP55 (1976), 1751

• α + ¹²C GCM

M. Libert-Heinemann, D. Bay et al., NPA339 (1980)

• $4\alpha THSR wf$ Not include α + ¹²C configuration.

Tohsaki, Horiuchi, Schuck, Roepke, PRL87 (2001) Funaki, Yamada et al., PRC82(2010)

• $4\alpha \text{ OCM}$ 4α -gas, α + ¹²C, shell-model-like configurations

Funaki, Yamada et al., PRL101 (2008)

Reproduction of lowest six 0+ states up to 4α threshold (15MeV) 11

		Experimental data				4 <i>α</i> ΟCM		
	E _x [MeV]	R [fm]	M(E0) [fm²]	Г [MeV]		R [fm]	M(E0) [fm²]	Г [MeV]
0 ⁺ ₁	0.00	2.71				2.7		
0 ⁺ 2	6.05		3.55			3.0	3.9	
0 ⁺ ₃	12.1		4.03			3.1	2.4	
0 ⁺ ₄	13.6		no data	0.6		4.0	2.4	0.60
0 ⁺ ₅	14.0		3.3	0.185		3.1	2.6	0.20
0 ⁺ ₆	15.1		no data	0.166		5.6	1.0	0.14
		over 15% of total EW	ver 15% total EWSR			20% of total EWSR		

Components of α +¹²C(L^{π}) channel in 0⁺ states of ¹⁶O

4α OCM calculation

Hoyle-analog states in A \neq 4n nuclei (¹¹B and ¹³C)

<u>Search for Hoyle-analogue states in A≠4n nuclei</u>

Definition of Hoyle-analogue state: A cluster-gas-like state described mainly by a product state of clusters, all with their c.o.m. in respective 0S orbits

- A=4n nuclei
 - ${}^{12}C=3\alpha : (0S_{\alpha})^3 70\%$ ${}^{16}O=4\alpha : (0S_{\alpha})^4 60\%$

Condensed into lowest orbit

$$(0S)^3_{\alpha}$$

• A \neq 4n nuclei, for example, ¹¹B=2 α +t : $(0S_{\alpha})^{2}(0S_{t})$ exit ¹³C=3 α +n : $(0S_{\alpha})^{3}(0S_{n})$

exit or not?

Purposes of present study

- Cluster structures in A≠4N nuclei: ¹¹B (¹³C)
- Hoyle-analogue states? Conditions of appearance? ${}^{11}B=2\alpha+t : (0S_{\alpha})^2(0S_t)$ ${}^{13}C=3\alpha+n : (0S_{\alpha})^3(0S_n)$
- Which states of ¹¹B (¹³C) correspond to the Hoyle-analogue?

R.B. Wiringa et al., PRC(2000)

 What happens in ¹¹B (¹³C) when an extra triton (neutron) is added into ⁸Be=2α (Hoyle=3α) state?

Formulation of α-condensation ----THSR wf and OCM approach ----

THSR and OCM:

based on Resonating Group Method (RGM)

(1) THSR: fully microscopic approach

(2) OCM : semi-microscopic approach an approximation of RGM

Present study: 2α+t OCM-GEM

OCM (Orthogonality condition model) Saito, PTP40 (1968) with GEM (Gaussian expansion method) Kamimura et al. huge model space:

(a) shell-model-like states (ground states etc.),

- (b) $^{7}Li+\alpha$, $^{8}Be+t$ cluster states,
- (c) 2α +t gas states

OCM (orthogonality condition model)

- An approximation of RGM (resonating group method)
- Relative motions among c.o.m. of clusters are exactly solved under an orthogonality condition arising from Pauli-Blocking effects

For example of $n\alpha$ system,

S. Sato, Prog. Thor. Phys. 40 (1968)

Easy to formulate 2α +t OCM and 3α +n OCM based on GEM

Results of OCM calculations

Yamada and Funaki, PRC82 (2010)

Structure study of ¹¹B

• α + α +t OCM with H.O. basis

Nishioka et al., PTP62 (1979)

• AMD calculation

Enyo-Kanada, PRC75 (2007)

• No-core shell model

Navratil et al., JPG36 (2009)

Not well understood for even-odd states of ¹¹B

Not studied well for even-parity states

 $\Phi_{c}^{(23,1)+(31,2)}(\nu,\mu) = \Phi_{c}^{(23,1)}(\nu,\mu) + \Phi_{c}^{(31,2)}(\nu,\mu), \qquad \text{OCM+GEM (Gaussian expansion method)}$ $\Phi_{c}^{(ij,k)}(\nu,\mu) = \left[\varphi_{\ell}(\mathbf{r}_{ij},\nu)\varphi_{\lambda}(\mathbf{r}_{k},\mu)\right]_{L}, \quad \varphi_{\ell m}(\mathbf{r},\nu) = N_{\ell}(\nu)r^{\ell}\exp\left(-\nu r^{2}\right)Y_{\ell m}(\mathbf{r}),$

Hamiltonian

$$H = T + V_{2\alpha}(r_{12}) + V_{2\alpha}^{Coul}(r_{12}) + \sum_{(ij)=(23),(31)} \left[V_{\alpha+t}^{c}(r_{ij}) + V_{\alpha+t}^{LS}(r_{ij}) \mathbf{l}_{ij} \cdot \mathbf{s} + V_{\alpha+t}^{Coul}(r_{ij}) \right] + V_{2\alpha t} + V_{Pauli},$$

$$V_{\alpha+x}(r) = \sum_{n} V_{n}^{(2)} \exp\left(-\beta_{n}^{(2)}r^{2}\right), \quad V_{\alpha+x}^{Coul}(r) = \frac{2xe^{2}}{r} \operatorname{erf}\left(ar\right) \qquad \alpha+\alpha, \alpha+t \text{ phase shifts}$$

$$V_{\alpha+x}(r) = \lim_{\lambda \to \infty} \lambda \left[\sum_{2n+\ell < 4} \left| u_{n\ell}(r_{12}) \right\rangle \left\langle u_{n\ell}(r_{12}) \right| + \sum_{2n+\ell < 3} \sum_{ij=(23),(31)} \left| u_{n\ell}(r_{ij}) \right\rangle \left\langle u_{n\ell}(r_{ij}) \right| \right]; \text{ Pauli blocking operator}$$

$$V_{2\alpha t} = \sum_{L^{\pi}, Q(=7,8)} \eta \left| SU3(\lambda\mu) : L^{\pi}Q \right\rangle \left\langle SU3(\lambda\mu) : L^{\pi}Q \right| \quad : \text{ effective } 2\alpha+t \text{ force}$$

Equation of motion $\delta[\langle \Phi | E - H | \Phi \rangle] = 0$

Single-cluster motions in ${}^{11}B(\alpha + \alpha + t)$

Single-cluster density matrix:

alpha: $\rho_{\alpha}(\mathbf{r},\mathbf{r}') = \left\langle \Phi_{J}(^{11}\mathrm{B}) \right| \frac{1}{2} \sum_{n=1}^{2} \left| \delta(\mathbf{r}_{n}^{(G)} - \mathbf{r}') \right\rangle \left\langle \delta(\mathbf{r}_{n}^{(G)} - \mathbf{r}) \right| \left| \Phi_{J}(^{11}\mathrm{B}) \right\rangle,$ triton: $\rho_{t}(\mathbf{r},\mathbf{r}') = \left\langle \Phi_{J}(^{11}\mathrm{B}) \right| \left| \delta(\mathbf{r}_{3}^{(G)} - \mathbf{r}') \right\rangle \left\langle \delta(\mathbf{r}_{3}^{(G)} - \mathbf{r}) \right| \left| \Phi_{J}(^{11}\mathrm{B}) \right\rangle,$

$$\int d\mathbf{r}' \rho_{\alpha}(\mathbf{r},\mathbf{r}') \varphi_{\alpha}(\mathbf{r}') = \lambda_{\alpha} \varphi_{\alpha}(\mathbf{r}), \qquad \sum \lambda_{\alpha} = 1$$

$$\int d\mathbf{r}' \rho_t(\mathbf{r},\mathbf{r}') \varphi_t(\mathbf{r}') = \lambda_t \varphi_t(\mathbf{r}), \qquad \sum \lambda_t = 1$$

 $\varphi(\mathbf{r})$: single-cluster orbital w.f. λ : occupation probability $\Phi_{I}(^{11}B)$: $\alpha + \alpha + t$ OCM w.f.

Suzuki et al., PRC65 (2002); Matsumura et al., NPA739 (2004) Yamada et al., EPJA 26 (2005); Funaki, Yamada et al., PRL101 (2008) Yamada et al., PRA (2008), PRC(2009)

¹¹B= α + α +t

Energy levels of ¹¹B

3/2- and 1/2+ states

Even-parity states

 $\alpha + \alpha + t OCM$

 $\alpha + \alpha + t$ OCM

T. Kawabata et al., PRC70 (2004)

vs. Hoyle state:

B(E0,IS)=120±9 fm⁴

Overlap amplitude with

 α +⁷Li(g.s) channel

B(E0,IS)=96±16 fm⁴ B(E0,IS)=92 fm⁴

T. Kawabata et al., PRC70 (2004)

vs. Hoyle state: B(E0,IS)=120±9 fm⁴

main configuration

3/2-3: α +7Li(3/2-) with S-wave

But ⁷Li part has a distorted α +t structure

Yamada & Funaki, PRC82(2010)

1/2+(3/2+)

3/2

 $3/2_{2}^{-}$

3/21

(1/2⁺)

1/**2**⁺

EXP

0

-5

-10

Occupation probabilities

32

Structure of 1/2⁺ states

Structure of 1/2⁺ states

Complex-scaling method for $1/2^+$ with $\alpha + \alpha + t$ OCM

Bound state

2nd 1/2+ exists as a resonant state.

Occupation probabilities of cluster orbits

Occupation probabilities of cluster orbits

0.0

 $S_1 P_1 D_1 F_1 G_1 S_2 P_2 D_2 F_2 G_2$

Summary

- Structure study of ¹¹B with α + α +t OCM using GEM
- 1st and 2nd 3/2- states : shell-model-like compact structure
- $3^{rd} 3/2$ state: M(E0) \approx M(E0) of Hoyle-state

Cluster structure: α+⁷Li(g.s) with S-wave, but distorted α+t structure in the ⁷Li part No similarity to cluster-condensate nature ⇔ bound by 3 MeV from α+α+t threshold

- 1st 1/2+ : bound by 3MeV from α+α+t threshold α+⁷Li(g.s) with P-wave: parity-partner of 3rd 3/2-
- 2nd 1/2+ (E_x=12.6 MeV; 1.5 MeV above 2α+t threshold) Strong candidate of Hoyle-analogue: (S_α)²(S_t) Complex-scaling method

E_x(cal)= 11.9 MeV, Γ =190 keV E_x(exp)=12.56 MeV, Γ =210±20 keV **Collaborators:**

¹²C, ¹⁶O : Funaki, Horiuchi, Roepke, Schuck, Tohsaki ¹¹B : Funaki

$$1/2^{-}, 1/2^{+}$$
 states in ^{13}C

- What happens in ¹²C when an extra neutron (n) is added into the Hoyle state (3α) ?
- Hoyle-analogue states?
- 3α +n OCM with GEM

S-orbit
$$\alpha$$
 α α n $s_{1/2}$ -orbit $(0S_{\alpha})^{3}(S_{n})$
 α n $J^{\pi} = 1/2^{+}$

<u>*α-n*</u> and *α-t* potentials: parity-dependent

odd waves : attractive enough to make resonances/bound states even waves: weakly attractive

$3\alpha + n$ OCM for ¹³C

J=1/2-, 1/2+:

reproduction of M(E0), Hoyle-analogue state

Summary

- Structure study of ¹¹B with α + α +t OCM using GEM
- 1st and 2nd 3/2- states : shell-model-like compact structure
- $3^{rd} 3/2$ state: M(E0) \approx M(E0) of Hoyle-state

Cluster structure: α+⁷Li(g.s) with S-wave, but distorted α+t structure in the ⁷Li part No similarity to cluster-condensate nature ⇔ bound by 3 MeV from α+α+t threshold

- 1st 1/2+ : bound by 3MeV from α+α+t threshold α+⁷Li(g.s) with P-wave: parity-partner of 3rd 3/2-
- 2nd 1/2+ (E_x=12.6 MeV; 1.5 MeV above 2α+t threshold) Strong candidate of Hoyle-analogue: (S_α)²(S_t) Complex-scaling method

E_x(cal)= 11.9 MeV, Γ =190 keV E_x(exp)=12.56 MeV, Γ =210±20 keV • ${}^{13}C = 3\alpha + n \text{ OCM}$

 $^{12}C(Hoyle) + p$ -wave neutron: $^{13}C(1/2-)$

Size of 3α part is shrunk, due to attractive *p*-wave α -n interaction ¹²C(Hoyle) + *s*-wave neutron: ¹³C(1/2+)

3rd 1/2+ is the candidate of Hoyle-analog state in the present study

Reflecting weakly attractive α -n interaction, 3 α +n gas-like state appears in 1/2+ above 3 α + n threshold

We predict cluster-gas-like states exit in $A \neq 4n$ nuclei as well as A=4n nuclei around their cluster disintegrated threshold.

Need experiments.

Gross-Pitaevskii-equation approach

• Total wave function:

 $\Phi(N\alpha) = \prod_{i=1}^{N} \varphi(\mathbf{r}_i) \quad \text{Symmetrized, (0s)}^{N}$

• Gross-Pitaevskii equation

 $-\frac{\hbar^2}{2m}\left(1-\frac{1}{N}\right)\nabla^2\varphi(\mathbf{r})+U(\mathbf{r})\varphi(\mathbf{r})=\varepsilon\varphi(\mathbf{r}),$

$$U(\mathbf{r}) = (N-1) \int d\mathbf{r} \, |\varphi(\mathbf{r}')|^2 \upsilon_2(\mathbf{r}, \mathbf{r}') + \frac{(N-1)(N-2)}{2} \int d\mathbf{r} \, d\mathbf{r} \, |\varphi(\mathbf{r}')|^2 \, |\varphi(\mathbf{r}')|^2 \, \upsilon_3(\mathbf{r}'', \mathbf{r}', \mathbf{r})$$

• Total energy of $N\alpha$

$$E(N\alpha) = N\left[\left\langle t \right\rangle + \frac{1}{2}(N-1)\left\langle \upsilon_2 \right\rangle + \frac{1}{6}(N-1)(N-2)\left\langle \upsilon_3 \right\rangle\right]$$

• Rms radius for nucleon

$$\sqrt{\langle r_N^2 \rangle} = \sqrt{\langle r_\alpha^2 \rangle_{GP} + 1.71^2}, \qquad \langle r_\alpha^2 \rangle_{GP} = (1 - \frac{1}{N}) \langle \varphi | r^2 | \varphi \rangle$$

Effective α-α potential

• Density-dependent potential (Gogny-type)

$$\upsilon_{2}(\mathbf{r},\mathbf{r}') = \upsilon_{0}e^{-0.7^{2}(r-r')^{2}} - 130e^{-0.475^{2}(r-r')^{2}} + (4\pi)^{2}g\delta(\mathbf{r}-\mathbf{r}')\rho\left(\frac{\mathbf{r}+\mathbf{r}'}{2}\right) + \frac{4e^{2}}{|\mathbf{r}-\mathbf{r}'|}\operatorname{erf}\left(a|\mathbf{r}-\mathbf{r}'|\right)$$
$$\upsilon_{0} = 271 \text{ MeV}, \ g = 1650 \text{ MeV} \cdot \text{fm}^{3} \qquad \text{(cf: Ali-Bodmer, 500 MeV)}$$

¹²C(0₂⁺), *E*^{exp}=0.38 MeV, *R*_{rms}=4.29 fm (Tohsaki et al, PRL 87, 192501,('01))

• Phenomenological 2α and 3α potential

$$\upsilon_{2}(\mathbf{r},\mathbf{r}') = 50e^{-0.4^{2}(\mathbf{r}-\mathbf{r}')^{2}} - 34.101e^{-0.3^{2}(\mathbf{r}-\mathbf{r}')^{2}} + \frac{4e^{2}}{|\mathbf{r}-\mathbf{r}'|} \operatorname{erf}(a|\mathbf{r}-\mathbf{r}'|)$$

Resonant energy of ⁸Be(0⁺), E=0.092 MeV Maximum value at $r \sim 4$ fm for α - α relative wf. Low energy α - α scattering phase shift

$$v_3(\mathbf{r},\mathbf{r}',\mathbf{r}'') = 151.5e^{-0.15[(\mathbf{r}-\mathbf{r}')^2 + (\mathbf{r}'-\mathbf{r}'')^2 + (\mathbf{r}'-\mathbf{r}'')^2]}$$

Needed in 3α and 4α OCM calculations by Fukatsu & Kato (similar role to DD term)

Radial behavior of $U_{\alpha}(r)$

Two features of IS monopole excitations in ¹⁶O

IS monopole S(E): 4α OCM

Two features in IS monpole exci.

	Fine structure E _x < 16 MeV	3-bump structure $16 < E_x < 40 \text{ MeV}$
4α OCM	ОК	difficult
RPA	difficult	OK

Origin: dual nature of G.S. of ¹⁶O (1) α-clustering degree of freedom (2) mean-field-type one (0s)⁴(0p)¹² : SU(3)(00)= ¹²C+α : Bayman-Bohr theorem

Huge model space is needed to reproduce S(E) in the whole energy region.

IS monopole S(E) with 4α OCM

FIG. 7. The histogram is the experimental E0 strength converted to monopole response function. The black line shows the monopole response function from Ref. [16] multiplied by 0.25 and shifted by 4.2 MeV.

Exp. condition: $E_x > 10$ MeV

4α OCM and EWSR of IS-monopole transitions

Ratio of OCM-EWSR to total EWSR in IS monopole transitions:

T. Yamada et al.

$$\frac{\text{OCM-EWSR}}{\text{total EWSR}} = 1 - \left(\frac{1.71}{R}\right)^2 = 0.60$$

4α OCM shares about 60% of the total EWSR value.

This is one of the important reasons that the 4α OCM works rather well in reproducing the IS monopole transitions in low-energy region of ¹⁶O.

OCM-EWSR:
$$\sum_{n} (E_{n}^{\text{OCM}} - E_{1}^{\text{OCM}}) \left| M^{\text{OCM}} (0_{n}^{+} - 0_{1}^{+}) \right|^{2} = \frac{2\hbar^{2}}{m} \times 16 \times (R^{2} - 1.71^{2})$$

Total EWSR:
$$\sum_{n} (E_{n} - E_{1}) \left| M (0_{n}^{+} - 0_{1}^{+}) \right|^{2} = \frac{2\hbar^{2}}{m} \times 16 \times R^{2}$$
$$R^{2} = \frac{1}{16} \left\langle 0_{1}^{+} \right| \sum_{i=1}^{16} (\mathbf{r}_{i} - \mathbf{R}_{cm})^{2} \left| 0_{1}^{+} \right\rangle$$

Bayman-Bohr theorem

$$\frac{1}{\sqrt{16!}} \det \left| (0s)^4 (0p)^{12} \right| \times \left[\phi_{\rm cm} (\mathbf{R}_{\rm cm}) \right]^{-1}$$
$$= N_0 \sqrt{\frac{12!4!}{16!}} A \left\{ \left[u_{40} (\xi_3, 3\nu) \phi_{L=0} (^{12}\mathrm{C}) \right]_{J=0} \phi(\alpha) \right\}$$
$$= N_2 \sqrt{\frac{12!4!}{16!}} A \left\{ \left[u_{42} (\xi_3, 3\nu) \phi_{L=2} (^{12}\mathrm{C}) \right]_{J=0} \phi(\alpha) \right\}$$

$$\phi_{\rm cm}(\mathbf{R}_{\rm cm}) = \left(\frac{32\nu}{\pi}\right)^{3/4} \exp(-16\nu\mathbf{R}_{\rm cm}^2)$$

c.o.m. w.f. of ¹⁶O

→ G.S. has $\alpha^{+12}C(0^+, 2^+)$ cluster degrees of freedom.

$$\frac{1}{\sqrt{16!}} \det \left| (0s)^4 (0p)^{12} \right| \times \left[\phi_{\rm cm}(\mathbf{R}_{\rm cm}) \right]^{-1}$$
$$= \widehat{N}_0 \sqrt{\frac{4!4!4!}{16!}} A \left\{ \left[u_{40}(\xi_3, 3\nu) \left[u_{40}(\xi_2, \frac{8}{3}\nu) u_{40}(\xi_1, 2\nu) \right]_{L=0} \right]_{J=0} \phi(\alpha) \phi(\alpha) \phi(\alpha) \phi(\alpha) \right\}$$

 \rightarrow G.S. has a 4 α -cluster degree of freedom.

Interesting characters of IS monopole operator

$$\widehat{O} = \sum_{i=1}^{16} (\mathbf{r}_i - \mathbf{R}_{cm})^2 = \sum_{k=1}^{4} \sum_{i=1}^{4} (\mathbf{r}_{i+4(k-1)} - \mathbf{R}_{\alpha_k})^2 +$$

$$\sum_{k=1}^{4} 4(\mathbf{R}_{\alpha_k} - \mathbf{R}_{\rm cm})^2$$

internal part of each α -cluster

relative parts acting on relative motions of 4α 's with respect to c.o.m. of ¹⁶O

$$= \sum_{i=1}^{4} (\mathbf{r}_i - \mathbf{R}_{\alpha})^2 + \sum_{i=5}^{16} (\mathbf{r}_i - \mathbf{R}_{12C})^2 + 3(\mathbf{R}_{\alpha} - \mathbf{R}_{12C})^2$$

internal part of
$$\alpha$$

internal part of ¹²C

relative part acting on relative motion of α and ^{12}C

Decomposition into Internal part and relative part plays an important in monopole excitations of ¹⁶O.