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The Deuteron

Data for the deuteron:
a) Binding energy: Ez=2.22464 + 0.00005 MeV

(i) from the measurements of its atomic mass, and the comparison of the
result with the sum of the masses of the proton and the neutron

(ii) measurement of the gamma ray energy emitted when the neutron and
proton combine to form a bound state (n-p capture)

b) Angular momentum and parity: J*=1*%
c) Magnetic dipole moment: py =(0.857393+0.000001) Ly

nuclear magneton p,=eh/2myc



d) Electric quadrupole moment: Qg =0.00282 b (1b=1028 m?)

<z2> 1.14
<rz2> 3

e) The radius of the deuteron:  rg=2.1fm




A square-well model for the deuteron
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In the center of mass system:
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For a spherically symmetric potential: 0,
' T
Im
d*u 2M [(l+1
ik E—-V(r)— ( | ) u; =0

dr? h? 2M 2
REGION | ..for the I=0 state: V(r) =-V, E=-Eg=-2.225 MeV
d*u  2M
— 4+ — (Vo — Eglu=0 ..boundary condition u=0 at r=0
dr? h2 | |

:> uy = Asin(Kr) K = %\/QA"I(VO — EB)




d*u  2M

REGION Il —— - _QEBU* — () --boundary condition u=0 at r=e°
dr h

j> ury = Be kT k= %\/ZMEB
L

... U and du/dr continuous at r=R:

Asin(KR) = Be ™" AK cos(KR) = —kBe *R

:> _ ...implicit relation between Eg, the width

R and depth V, of the potential.

EXP. Eg=-2.225 MeV. For R=2.1 fm (exp. charge radius), the numerical solution:

Vo = 34 MeV

For this value of V, the equation has only one solution for E;. There are no excited
bound states.
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\ Bound state of

The deuteron wave function

The deuteron ground state deuterium at
Qd¢0 |:> cannot be described by the about - 2 MeV
spherically symmetric 3
TRCITRC T pherically symmetric3S,
wave function. MeV'! |
U | : deuteron

| wavefunction
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The magnetic moment operator: fi = Z ( '+ ga )
ghb=1 g, =0 g>=558 g5 =—3.82

In the c.m.s. 1,=1/2 | (relative orbital angular momentum). The magnetic moment of the

deuteron is defined as:

: 9, + a9, [
S1: < w(%lll/»‘zW(%u >= £ / ug(’r)dr =
0

2
p T n
Ip T In _ 0.88n
2
3 9+ 95
"Dy < "»b%umzw%u >= 1 s 1 = 0.31pun

EXP. pq =0.8573uyN



The ground-state wave function is a superposition of the 3S; and 3D, states.
2 2
v =Csy¥s+Cp¥p  C5+CpH=1

o) pa = C% 0.88un + CF 0.31un = 0.8573un

C:=096 O} =0.04

The electric quadrupole moment:

... the quadrupole operator:

Qo =e(32° —r?) = \/ 16?71-67‘23’20(9, 0y



The quadrupole moment is defined as: < 14 JM =.

Qolva; IM = J >

Qg is an operator in coordinate space and does not depend on the spin. It is a tensor
operator of rank 2 and <Qu> # 0 only for | 2 1. This means that <Qy> = 0 in the 3S; state.
The quadrupole moment of the deuteron presents direct evidence for the presence of
the 3D; component in the ground-state wave function.

EXP. Q4 =0.28 e fm?

... positive value -> prolate shape. Elongated along
the z-axis (axial symmetry).

The calculated value:

p . 1 R
(2(1(31)1) — _F)(f < ,l..,..

for the exp. value of the charge radius. Even the sign
is wrong!

>p~ —0.77 e fim?

12 3¢

Qo

381 > +C% < *Dy|Qo|>Dy > +2CsCp < 38,

Qo|*D; >

The first term vanishes, the second is small (~ Cp2) and with a wrong sign. The third,
non-diagonal term dominates.



Low-energy scattering

f(0) = 1 Z(Zl + 1)e™'sin &; P (cos 6)

.

[=0

... in the limit of very low energy, contribution only from the |=0 term (Py(x)=1):

1, - 4 4
f(0) = Ee“s“ sin dg ) 0= lzrlmf(()) = k72r sin? &

... in the extreme limit E -> 0, f(0) remains finite only if 5, -> 0

ﬂ o =4ma® and ug ~ sin(kr + &) ~ kr + 6y = k(r — a)

-

can be used to determine if a state is bound!



E. Wigner -> the nuclear force depends on the spin. NN scattering differs when nucleons
collide with parallel (triplet) spins or antiparallel (singlet) spins.

... NN scattering without polarization:

Neutron-proton scattering cross section:

If c=20.4bando,=3.4b,theno,=71b.

3 1

o = —4ma; + -4wa;
3! 1

a, = (5.423 + 0.005) fm a, = (-23.71 + 0.001) fm

This is because the singlet potential is
shallower that the triplet one, and close
to the threshold for the appearance of
the first bound state. This leads to a
resonance when the incident particle
has very low energy.

a > 0 existence of a bound state, a < 0 no bound state!



.. in the asymptotic region: ()) ~ k:('r — a)
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a, = (5.423  0.005) fm

S

a, = (-23.71 + 0.001) fm



Effective Range Theory

What happens when the E -> 0 approximation is no longer valid?

[ =0 in n-p scattering presents a safe approximation up to ~ 20 MeV.

... consider an incident neutron with energy E; and wave number: /{.‘1 =

... radial equation for |=0:

... for another energy E,:

vV 27‘7LE1
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d“uq 9 2m _ _,
— 4+ kiur — —V(r)uy =0
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dr? dr? (k3 1)



R
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S uguy — wus|y = (k3 — kl)/ wiruo dr %
0

... in the asymptotic region:

up(r) ~ sin(kr — ln /2 + &)
Let  be the asymptotic form of u for =0, but valid for every point in space:

o sin(kyr + 01) L
Ql(') T Sill (S'] (“.2(]) T

\ normalization /

R
el ndl =R [ b dr s

sin(kor + d2)

sin 0o

R is arbitrary. If it is chosen beyond the range of the nuclear potential Y(R) = u(R), and the
LHS of % and % coincide at r=R. In addition u;(0)=u,(0)=0. For R -> oo and % % —:

—




G1(0)850) — va(0)44(0) = (3 - &2) [ " (Wrt — urus) dr

> ko cotdo — kycotdy = (k‘g — k%)/ (’l,bl'(pz — u1u2) dr
0

coS 0 1

Consider the special case k; ->0:  ky cot 01 = k1 — ~
$1ndq a

> kcot()’:—%-i-kz/ (Yot — uou) dr
0

\ J
|

#0 only inside the range of the potential

... approximation Y=y, and u=u,, because in both cases the energy is small compared to V.

| -G

EFFECTIVE RANGE




47 5 A 1
o = sin? 8y = 4 —
k2 O 2 + k2 cot? &

... Cross section:

2

o dma
t a’k? + (1 — %a Teffk?)?

The effect of the potential is parameterized with the effective range r.¢ and the scattering
length a.

Low-energy scattering does not provide information about the form of the NN potential.

n-p scattering:

3 47r(1.2(2 n 1 47“1'3
dafk? + (1 = zamrk?)? 4 a2k? + (1 - ja.rsk?)?

g —

4 parameters: ay, as, ', s a, = (5.423 +0.005) fm a, = (-23.71 + 0.001) fm

ress iN the triplet state can be obtained from the binding energy of the r.=1.76 fm

deuteron:
From the fit of the cross section to low-energy scattering data: | r. = 2.56 fm




The NN Interaction

P op
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Nucleons are basic components of nuclei. A traditional goal of nuclear physics has been
the understanding of the properties of atomic nuclei in terms of the “bare” interaction
between pairs of nucleons. However, the underlying theory of strong interactions, QCD,
shows that the NN interaction is not fundamental.

— — .
... hucleon degrees of freedom: sy Piy Si,
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Charge independence of the NN interaction Vnp = Vpp = Van

:> isospin quantum number
The wave function of the NN system: _

Phenomenological potentials

An appropriate functional form for the NN potential is parameterized in such a way that
it reproduces as closely as possible the data on NN scattering and deuteron properties.
There are two classes of such potentials: local and nonlocal.

A local potential is completely specified at each point r in space. An example of nonlocal
potentials are momentum-dependent potentials.



LOCAL POTENTIALS

Symmetry and invariance properties of the Hamiltonian operator constrain the general

form of the interaction.

... if we consider the proton and neutron masses to be equal, the cms and relative

coordinates: i
F=7 — 7 ﬁ:§ﬂ+@)
I S = L
P=§(P1—P2) P = p) + p>

1) invariance under translations ’Fj — 7"'7- +ad j3=1,2




2) invariance under Galilean transformations ﬁj o ﬁJ + 170 = 1, 2

— V(7 p, R, P)=V(F,p,R, P + 2p,)
(i, pp can take any value :> V(1,2) # V(}_{t’ }3)

V(1,2) = V(7,p.6;,7:j = 1,2)

3) Space reflection and time-reversal invariance. Under space inversion (r -> -r) and time
reversal (o ->-0), o and r are not invariant separately. They may appear in the potential
only in product forms. The parity of a closed system is conserved in strong and electro-
magnetic interactions.

4) Rotational invariance

5) Particle exchange symmetry (Pauli principle) V(l, 2) — V(Q7 l)




The most general form of the NN potential that preserves invariance under particle exchange,
translation, Galilean transformation, rotation, parity, and time-reversal:

V(l, 2) = Ve + V3(51 . 52) —+ VTSm(T_") - VTrslz(ﬁ) + VLsf; . §+ VQ(I—: . S")z
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... the spin-orbit operator: [_: . §

... the tensor operator , . . r . r - =
;51223 g1 — g9 — —(0’1'(72)
.,) .,)

... scalar functions:

H,Ty]=0 [HT.]=0

Isospin dependence of the interaction:

:> [H T2] — () States with T=0 and T=1 correspond to different energies, even
though nuclear forces do not depend on the charge (isospin).

This is because of the dependence of the nuclear force on the
spin (the total wave function must be antisymmetric).



:> V, must be scalars in isospin space: Va — VCM0 + Val'?l . 7'-'2

NONLOCAL POTENTIALS

h? ~
The most general form of a potential: — —p2 |I,b > +V|w >= Ell,b >

2u
M, M,,

1
- [ |::> r)+ < T‘ ‘/ W >= Ew ’

,LL:

<F VY >= /d3r’ <F|VIF' ><7' | >= /dST’V(ﬁF')@D(F')

Local potentials present a special case: _

:> <7r |V|¢ > — V(fF’ )w(f’) The action of the interaction at r depends

only on the value of ¥ at that point.




Meson-exchange potentials

In 1935 Yukawa made an analogy between the strong, short-ranged nuclear force and the
electromagnetic force between charged particles. If the Coulomb force is due to the exchange

of a virtual quantum — photon, perhaps the nuclear force is likewise due to a virtual particle,
necessarily of integral spin, exchanged between nucleons.

The stationary Klein-Gordon equation for the pion field:

2 9
5 Mmact L
(VZ — —= ) ¢ = —go(r)

,— T

€ _ MmgcC

r H="h

The potential between two nucleons is proportional to the wave function of the pion, i.e. to
the probability amplitude that the emitted pion finds itself close to the other nucleon.

solution: O =gq

e KT

'

YUKAWA POTENTIAL: V =g¢°



The one-pion exchange potential (OPEP)

1t — pseudoscalar particle. The interaction Hamiltonian for two nucleons that interact by

exchanging a pion:
2
H'=£ /d3r(5r—ri7"’i-ai-v—’r
#; ( )Ti - ( ¢(r))

M f?
h dmhe

=

= 0.088 = 0.001

O = {7r+, T, 71'0} vector in isospin space

| ~

Klein-Gordon eq. (V — /l

2
Z Vi)o(r —r;)

:> ... the pion field produced by nucleon 2 (source):

(3—u|r—r'|

(V% — p1?) = —4mwd(r — ') E—

v — 1

From the relation:




— f . N e—ﬂ|r-r2|
¢(r)——m72(02' 2) Fa—

:> The interaction energy of nucleon 1 with this field generated by nucleon 2:

2 e~ H|r1—ra2|

ik A 2(71 72)(01 - V1)(02 - V3)

ry —ro|

This is to be identified with the one-pion exchange potential:

The exchange of a pseudoscalar meson leads to a spin-dependent potential and a tensor part.




p p n p p n

I — L 1+ = L ]

p P n p n p

The OPEP potential describes the NN scattering for angular momenta | > 6. This shows that
OPEP represents the nuclear force at large distances (r > 2 fm).



Generalized one-boson exchanﬁe: |

... system of coupled nucleon and meson fields: H = HR, - H& + H,,~n

The meson-nucleon couplings:

1) scalar meson:

2) pseudoscalar meson: pseudoscalar coupling

pseudovector
coupling

3) vector meson:




Feynman diagram for one-boson exchange*

= p1p1<

Bonn potential: based on exchange of mesons for the NN interaction below the pion-

production threshold.

In each spin-isospin channel the potential is written in the form:

p p r o q

V=Ve+VpSia+VrsL-S
o P w S Vertex functions (form factors) are introduced to account for the
————— finite size of the nucleons:

; n/2
F(q?) A2 —m2\™ 1 9
’ _ ‘ n=1,4,...

p b { A% — ¢?

:> the high-momentum components are suppressed.



... the long range part of the potential is described by one-pion exchange (r > 2 fm).

... the intermediate-range part is attractive: two-pion exchange (TPE)

T
T | T
= [771 + [¢ 27NN
_m_ g ‘e
m mo
O ];><: 2TNA
m ™
m ™
S ]:><:ﬂ 2maa
m m

m m w
' t,@\j S ESE [j,@\[l TS,
m m

... the short-range part is dominated by vector meson exchange (p and w) - repulsion

... the very short-range part of the potential is described purely phenomenologically, either
by a sharp cut-off radius (hard core), or in a soft form (soft core)



N-N Potential V(r)/(MeV)
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PWA

Models based on a potential do not use experimental data directly. Instead, they compare
their outputs with phase shifts from partial wave analysis (PWA).

CD-Bonn Nijmegen Argonne
potential phase shift analysis Vs potential
proton-proton data
1992 pp database (1787 data) 1.00 1.00 1.10
After-1992 pp data (1145 data) 1.03 1.24 1.74

1999 pp database (2932 data) 1.01 1.09 1:35



Three- and Four-Nucleon Systems

Potentials | E(*H) E(*He) FE(*He)

Nijm 93 -7.668  -7.014  -24.53

Nijm I -7.741 -7.083  -24.98
Nijm II -7.659  -7.008  -24.56
AV18 -7.628  -6.917  -24.28

CD-Bonn | -8.013 -7.288 -26.26

Exp. -8.482  -7.718  -28.30

3H, 3He and “He binding energy predictions for several NN potential models compared
to the experimental values. All energies are given in MeV.

... underbinding — evidence for three-nucleon (3N) forces

The number of possible operators that can be used to construct a 3NF is much larger
than in the NN-force case, and one cannot examine all of them to determine which
are the important ones at low-energy.



21t — exchange 3NF

™
~<—-40(2)
m ™ -
_ Q'
o(3) ¢ === w4 5(2) = i A + ...
@ Ql 0'(3) $ = aDm -
Q
3 1 2 3 1 2

The Fujita-Miyazawa 3NF.

3NF including heavier mesons

sr T s Sr
o(3) $>- —<=402) to3) $->- <—¢ o(2) n-range — short-range 3NF terms.
Q Q' Q Q'
3 1 2 3 1 2




Potentials A [m;] | EGH) E(*He) E(‘He)

3 3 4 i i
CD-Bonn+TM 4784 | 8478 -7.735 2015 | M, °Heand"He binding energy
AV18+TM 5.156 | -8.478 -7.733 -28.84 | Predictions for several NN and 3N
AVIS+TM 4756 | -8.448 -7.706 -28.36 | Potential models compared to the
AV18+Urbana IX — | 8484 7739 2850 | experimental values. All energies

are given in MeV.
Exp. | 8482 -7.718  -28.30

30 T T

Tjon-line: a-particle binding
energy predictions E(*He) vs
the predictions for the 3H
binding energy for several
interaction models. Results
without (crosses) and with
(diamonds) 3N forces are
shown. The experimental
point is marked by a star.
The line represents a least

square fit to NN force
predictions only.

E,( ‘He) MeV]

AVISsTM, | -
AVI18+Urb Ix\.

E,(’H) [MeV]
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Differential cross section in elastic pd
and nd scattering at 65 and 135 MeV. S
The blue (violet) shaded bands are NN g
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various interactions.
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Nuclear Interactions

...binding energies, excitation spectra, densities, transition amplitudes, low-energy astrophysical
reactions, in terms of nucleons interacting with realistic potentials.

The nuclear Hamiltonian: H = Z T; + Z vij + Z Vz]k + .

i<j i<j<k

— can be written as a sum of eighteen operators (N = 18):

N
vij =) ()0}
p=1

o — Y T I S
Vij = Vij + Vij + Vij + v;

/N Short range

Electromagnetic Intermediate range
One-pion exc.



One-pion exchange: vj.]T. =[5, (Nei-oj+ V() Si| Ti-tj+ [Vip()oi- 0+ vi(r) S| Ty

Operators: @:1_8 = [1>0i -0, Sij L - S] ® [1> Ti: TJ']

O =12 1%0;-0,,(L-9*]®[L7;-7;]  ..quadraticin L.

@5215_18 — [T,-]-, Tijo;-0j, TiSij iz + tj,z] ... break charge-
independence.

The AV18 interaction has 42 parameters adjusted to NN data (x?/datum = 1.1).

The lllinois three-nucleon potential consists of two- and three-pion terms and a simple
phenomenological repulsive term. Parameters adjusted to fit 17 nuclear levels for A < 8.

L T

In light nuclei: (Vi) ~ (0.02 to 0.09)(v;;) ~ (0.15 to 0.6)(H)

... because of a large cancellation of T and v;;.



Chiral EFT forces V=> V'dc (A%)
v=0

... an infinite series of interaction terms. A power-counting scheme (ChPT) arranges the terms according
to their importance, in powers of p/A,. Typical momentum scale p (or pion mass), and chiral symmetry
breaking scale A,,.

NN 3N 4N
LO V;‘())ito =Ci1+C,o1:0,+C11-10+Chr01:0,71 - T
(Q/AX)O v=0 nN_ [ 84 zal'qaz’q .
Vn (pap)_ zfn q2+m721 T1°T2
NLO >< T
(Q/A,)° [\\{ ------ -

NNLO ¥DH<J y+

(Q/A)°

N°LO >< +:::+|X| { |H H*H

(Q/A)" +:::] t‘fzﬂ l\,\;—»\:: [v







Quantum Monte Carlo Calculations

Variational Monte Carlo (VMC)

... start with a trial wave function which contains a number of variational parameters. These parameters

are varied to minimize the expectation value of the Hamiltonian:

_ (YrlH W) Y, [ARYR, 0, )HYr(R,0,7)
YT W) T Y, [dRUER 0, 1)U R, 0, 7))

Ey  ground-state
energy!

R:{I‘l...l’]\]},O':{0'1...0']\7},2111(11':{1'1..

— numerical evaluation of a multidimensional integral!

- In the VMC a probability distribution P is used to sample a set of M configurationsin{R, o, 1}
space that are used to estimate the integral:

HYrR,0,7)
5 >, [ dRPR, o, 7) AR

> .. [dRPR,0,7)

TN



W) =[S H(1 + Uij + ZiUiji)| H fe(rij)|®@)

1<) 1<) \

Uij = ) up(riz)O;;
p=2,6

The radial correlations f.(r)and uy(r) include variational parameters that are chosen in order to minimize
the energy E, .

The one-body part of the trial wave function is a 1hw shell-model wave function. It determines the
quantum numbers of the state being computed and is fully antisymmetric. For 3H and 3#He, can be
antisymmetrized in just spin-isospin space, for example:

PCH,M; = 3)) = Z(pt ntnl) — [pTnlnt) +|nd ptnt)
—ntptnl) + [ntnlpt) —Inlntpt))



Green’s Function Monte Carlo

The VMC trial wave functions contain admixtures of excited-state components in addition to the
desired exact ground-state component W,

Upr =W+ ZO&L“I%‘
Green’s Function Monte Carlo — projects W, out of W; by propagating in imaginary time:
(r) = exp[—(H — Eo)r]¥r ,

_ o~ (Bo—Eo)T W + Zaie—(Ei—Eo)T\Iji]
lim ¥(7) x ¥y ,

T—00

E, - guess for the exact energy E,

... evaluation of W(t) by introducing a small time step AT, T=nAT

mn . .
U(r) = [e—(H—EO)AT} el G is the short-time
Green’s function.

Gos(R,R) = (R, ale”H-FI)ATIR, 3)
spin-isospin



U(R,,7) = /G(Rn,Rn—1) --G(Rq1,R0)¥7(Rp) dP ... includes spin and isospin

E(7)

degrees of freedom.

~ [OL(R,) G'(Ry, Rys1) - GT(R1, Ro) H ¥r(Ro) dP

Monte Carlo evaluation of the 3An integral.

E (MeV)

Examples of GFMC propagation
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[llustrative results

Annu. Rev. Nucl. Part. Sci. 2019. 69:279-305

Ground-state energies and charge radii for light nuclei with 3 <A <16

using N N and 3N chiral EFT interactions.
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Ground- and excited-state energies for light nuclei.
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Ab initio No Core Shell Model

...system of A point-like nonrelativistic nucleons bound by realistic two- (NN) or two- plus three-
nucleon (NNN) interactions. All the nucleons are considered active - ‘no core’.

The Hamiltonian

1 @i — D)? & 2

Hy =T +7V = A Z ~om + Z VNN, + Z VNNN, ijk»
1< 1<J i<j<k

... in NCSM, large but finite HO basis. An effective interaction appropriate for the basis truncation

must be derived.

A single-nucleon HO wave function can be written as: @uim (7; b) = Ry (r; b)Yy (7)

HO length parameter: b = %

Slater determinant basis constructed from single-nucleon HO wave functions:

@nlimm; (F, 0,7, b) — Rnl(r; b)(Yl(?)X(O’))gl)X(t)mt 2?21 (zni + ll) =< Ntotmax



Effective interactions In ab initio NCSM calculations a truncated HO basis is used. The

inter-nucleon interactions act in the full space and, therefore,
need to be renormalized in the truncated space, or model

space. An effective Hamiltonian is constructed with the bare
inter-nucleon interactions replaced by effective interactions.

... an arbitrary Hamiltonian: H|k) = Ei|k)

The full space is divided into the model space defined by a projector P and the complementary space
defined by a projector Q, P+ Q= 1.

The hermitian effective Hamiltonian can be obtained directly by a unitary transformation of the
original Hamiltonian: H.¢ = Pe He’P

N OLS
max
Transform

P PH, P PH.Q =0

! ! ;
Q QHeffP QHeﬁQ

B.R. Barrett et al. / Progress in Particle and Nuclear Physics 69 (2013) 131-181



The effective Hamiltonian contains many-body terms. For an A-nucleon system all terms up to A-body
will in general appear in the effective Hamiltonian even if the original Hamiltonian consists of just
two-body or two- plus three-body terms.

The two-body or three-body effective interaction is by construction exact for the
two- or three-nucleon system. It is an approximation of the exact A-nucleon
effective interaction.

The two-body effective Hamiltonian used in the A-nucleon system:

eff = Zh + szefflj

i<j
The three-body effective Hamiltonian:
A 1 A
Q2 _ Z _ Z Z 7 NNN
HA,eff - hl + 3eff ijk + 3eff, ijk
. A—2 ~
i=1 i<j<k 1<]<k
J

B | J
— ' '
HO 3-body effective interaction  3-body effective interaction

contribution from the NN contribution from the NNN
interaction interaction

.. plus Hey must be subtracted.

The unitary transformation performed on the Hamiltonian should also be applied to other operators
that are used to calculate observables.



Convergence

K T T T T T T T T T T T T T T 1
3H ground-state energy i ) i
dependence on the size 3k \‘\\\ _
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' I -A r
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\\ ©—0 NN+NNN eff
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[} - \\ 4
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Lq i Q\\\A N
iy - \ _|
7 VS
- Q ~< _ _
8 _MM—O-—M—Q—Q—Q—Q—Q_
9L _
I T T T N I N O

[ R N B
0 2 4 6 810121416 18 20 22 24 26 28 30 32 34 36
N

The calculation without the NNN interaction converges to the ground-state energy -7.85 MeV. With
the NNN interaction included, the result is -8.47 MeV, close to experiment (-8.48 MeV).



No Core Shell Model Applications

NN+NNN  Exp

NN
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States dominated by Op-shell configurations for 1°B, 1B, 1°C, and 3C calculated at N,,,, = 6, hQ= 15
MeV. The excitation energy scales are in MeV.
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NCSM applications to nuclear reactions

Nuclei - bound states, unbound resonances, and scattering states.

120

“He(n, n)*He

phase shifts

T T
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“He(n, n)*He cross section
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