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The Two-Nucleon System



The Deuteron
Data for the deuteron:
a) Binding energy:   EB = 2.22464 ± 0.00005 MeV

(i) from the measurements of its atomic mass, and the comparison of the 
result with the sum of the masses of the proton and the neutron

(ii) measurement of the gamma ray energy emitted when the neutron and 
proton combine to form a bound state (n-p capture)

b) Angular momentum and parity: Jπ = 1+

c) Magnetic dipole moment: μd = (0.857393±0.000001) μN

nuclear magneton μN = eħ/2mNc



d) Electric quadrupole moment:    Qd = 0.00282 b (1b=10-28 m2)

e) The radius of the deuteron: rd=2.1 fm



A square-well model for the deuteron 
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In the center of mass system:

-reduced mass:



For a spherically symmetric potential: 

REGION I …for the l=0 state:   V(r) = -V0 E=-EB=-2.225 MeV

…boundary condition u=0 at r=0



REGION II …boundary condition u=0 at r=∞

… u and du/dr continuous at r=R:

…implicit relation between EB, the width 
R and depth V0 of the potential.

EXP. EB=-2.225 MeV. For R=2.1 fm (exp. charge radius), the numerical solution:

For this value of V0 the equation has only one solution for EB. There are no excited 
bound states.



The deuteron wave function

Qd≠0
μd≠μn+μp

The deuteron ground state
cannot be described by the 
spherically symmetric 3S1 
wave function.

… states with maximal projection:



The magnetic moment operator:

In the c.m.s. lp=1/2 l (relative orbital angular momentum). The magnetic moment of the 
deuteron is defined as:



The ground-state wave function is a superposition of the 3S1 and 3D1 states.

The electric quadrupole moment:

… the quadrupole operator: 



The quadrupole moment is defined as:

Q0 is an operator in coordinate space and does not depend on the spin. It is a tensor 
operator of rank 2 and <Q0> ≠ 0 only for l ≥ 1. This means that <Q0> = 0 in the 3S1 state.
The quadrupole moment of the deuteron presents direct evidence for the presence of 
the 3D1 component in the ground-state wave function. 

EXP. Qd = 0.28 e fm2

… positive value -> prolate shape. Elongated along 
the z-axis (axial symmetry). 

The calculated value:

for the exp. value of the charge radius. Even the sign 
is wrong!

The first term vanishes, the second is small (~ CD
2) and with a wrong sign. The third, 

non-diagonal term dominates.



Low-energy scattering

… in the limit of very low energy, contribution only from the l=0 term (P0(x)=1):

… in the extreme limit E -> 0, f(θ) remains finite only if δ0 -> 0

scattering length

and

can be used to determine if a state is bound!



E. Wigner -> the nuclear force depends on the spin. NN scattering differs when nucleons
collide with parallel (triplet) spins or antiparallel (singlet) spins. 

… NN scattering without polarization:

If σ = 20.4 b and σt = 3.4 b, then σs = 71 b. This is because the singlet potential is 
shallower that the triplet one, and close 
to the threshold for the appearance of 
the first bound state. This leads to a 
resonance when the incident particle 
has very low energy. 

at = (5.423 ± 0.005) fm     as = (-23.71 ± 0.001) fm

a > 0 existence of a bound state,  a < 0 no bound state!

Neutron-proton scattering cross section:



… in the asymptotic region: 

at = (5.423 ± 0.005) fm 

u(r)

r

as = (-23.71 ± 0.001) fm



Effective Range Theory
What happens when the E -> 0 approximation is no longer valid?

in n-p scattering presents a safe approximation up to ~ 20 MeV.

… consider an incident neutron with energy E1 and wave number:

… radial equation for l=0:

… for another energy E2:



… in the asymptotic region: 

Let ψ be the asymptotic form of u for l=0, but valid for every point in space:

normalization

★

★ ★

R is arbitrary. If it is chosen beyond the range of the nuclear potential ψ(R) = u(R), and the 
LHS of ★ and ★★ coincide at r=R. In addition u1(0)=u2(0)=0. For R -> ∞ and ★★−★:



Consider the special case k1 -> 0:

≠0 only inside the range of the potential

… approximation ψ≈ψ0 and u≈u0, because in both cases the energy is small compared to V.

EFFECTIVE RANGE



… cross section:

The effect of the potential is parameterized with the effective range reff and the scattering 
length a.

Low-energy scattering does not provide information about the form of the NN potential.

n-p scattering:

4 parameters: at, as, rt, rs at = (5.423 ± 0.005) fm     as = (-23.71 ± 0.001) fm

reff in the triplet state can be obtained from the binding energy of the 
deuteron:

rt = 1.76 fm

From the fit of the cross section to low-energy scattering data: rs = 2.56 fm



The NN Interaction



Nucleons are basic components of nuclei. A traditional goal of nuclear physics has been 
the understanding of the properties of atomic nuclei in terms of the “bare” interaction 
between pairs of nucleons. However, the underlying theory of strong interactions, QCD, 
shows that the NN interaction is not fundamental.

… nucleon degrees of freedom: 

Charge independence of the NN interaction

isospin quantum number

The wave function of the NN system: 

Phenomenological potentials

An appropriate functional form for the NN potential is parameterized in such a way that 
it reproduces as closely as possible the data on NN scattering and deuteron properties. 
There are two classes of such potentials: local and nonlocal.

A local potential is completely specified at each point r in space. An example of nonlocal 
potentials are momentum-dependent potentials.



LOCAL POTENTIALS

Symmetry and invariance properties of the Hamiltonian operator constrain the general 
form of the interaction.

… if we consider the proton and neutron masses to be equal, the cms and relative 
coordinates:  

1) invariance under translations



2) invariance under Galilean transformations

can take any value

3) Space reflection and time-reversal invariance. Under space inversion (r -> -r) and time 
reversal (σ -> -σ), σ and r are not invariant separately. They may appear in the potential 
only in product forms. The parity of a closed system is conserved in strong and electro-
magnetic interactions. 

4) Rotational invariance

5) Particle exchange symmetry (Pauli principle)



The most general form of the NN potential that preserves invariance under particle exchange,
translation, Galilean transformation, rotation, parity, and time-reversal:

… the spin-orbit operator:

… the tensor operator

… scalar functions:

Isospin dependence of the interaction:

States with T=0 and T=1 correspond to different energies, even 
though nuclear forces do not depend on the charge (isospin). 
This is because of the dependence of the nuclear force on the 
spin (the total wave function must be antisymmetric). 



Vα must be scalars in isospin space:

NONLOCAL POTENTIALS

The most general form of a potential:

Local potentials present a special case:

< ~r |V̂ | >= V (~r ) (~r )
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The action of the interaction at r depends 
only on the value of 𝜓 at that point.



Meson-exchange potentials

In 1935 Yukawa made an analogy between the strong, short-ranged nuclear force and the
electromagnetic force between charged particles. If the Coulomb force is due to the exchange
of a virtual quantum – photon, perhaps the nuclear force is likewise due to a virtual particle, 
necessarily of integral spin, exchanged between nucleons.

The stationary Klein-Gordon equation for the pion field:

solution:

The potential between two nucleons is proportional to the wave function of the pion, i.e. to
the probability amplitude that the emitted pion finds itself close to the other nucleon. 

YUKAWA POTENTIAL:



The one-pion exchange potential (OPEP)

π – pseudoscalar particle. The interaction Hamiltonian for two nucleons that interact by 
exchanging a pion: 

vector in isospin space

Klein-Gordon eq.

… the pion field produced by nucleon 2 (source):

From the relation:



The interaction energy of nucleon 1 with this field generated by nucleon 2:

This is to be identified with the one-pion exchange potential:

The exchange of a pseudoscalar meson leads to a spin-dependent potential and a tensor part.



The OPEP potential describes the NN scattering for angular momenta l ≥ 6. This shows that 
OPEP represents the nuclear force at large distances (r ≥ 2 fm).



Generalized one-boson exchange:

… system of coupled nucleon and meson fields:

The meson-nucleon couplings:

1) scalar meson:

2) pseudoscalar meson:

3) vector meson:

pseudoscalar coupling

pseudovector
coupling



Feynman diagram for one-boson exchange:

Bonn potential: based on exchange of mesons for the NN interaction below the pion-
production threshold. 

In each spin-isospin channel the potential is written in the form:

Vertex functions (form factors) are introduced to account for the 
finite size of the nucleons: 

the high-momentum components are suppressed.



… the long range part of the potential is described by one-pion exchange (r > 2 fm).

… the intermediate-range part is attractive: two-pion exchange (TPE)

… the short-range part is dominated by vector meson exchange (ρ and ω) - repulsion

… the very short-range part of the potential is described purely phenomenologically, either 
by a sharp cut-off radius (hard core), or in a soft form (soft core) 



short intermediate long

πσ

ω,ρ



Models based on a potential do not use experimental data directly. Instead, they compare 
their outputs with phase shifts from partial wave analysis (PWA). 

PWA

χ2/datum



Three- and Four-Nucleon Systems

3H, 3He and 4He binding energy predictions for several NN potential models compared 
to the experimental values. All energies are given in MeV.

… underbinding – evidence for three-nucleon (3N) forces

The number of possible operators that can be used to construct a 3NF is much larger 
than in the NN-force case, and one cannot examine all of them to determine which 
are the important ones at low-energy.



2π – exchange 3NF

The Fujita-Miyazawa 3NF.

= + …

3NF including heavier mesons

π-range – short-range 3NF terms.



3H, 3He and 4He binding energy 
predictions for several NN and 3N
potential models compared to the 
experimental values. All energies 
are given in MeV.

Tjon-line: α-particle binding 
energy predictions E(4He) vs
the predictions for the 3H 
binding energy for several 
interaction models. Results 
without (crosses) and with 
(diamonds) 3N forces are 
shown. The experimental 
point is marked by a star. 
The line represents a least 
square fit to NN force 
predictions only.



Differential cross section in elastic pd 
and nd scattering at 65 and 135 MeV. 
The blue (violet) shaded bands are NN 
force only (NN+3NF) predictions for 
various interactions.

Elastic Nd scattering



Ab Initio
Calculations of 

Light Nuclei



Nuclear Interactions

…binding energies, excitation spectra, densities, transition amplitudes, low-energy astrophysical 
reactions, in terms of nucleons interacting with realistic potentials.

The nuclear Hamiltonian:

Non-relativistic kinetic energy

NN potential

NNN potential

Argonne v18 (AV18) NN potential

Gandolfi et al. Nuclei: QMC and χEFT Interactions

The AV18 model can be written as an overall sum of eighteen
operators (N = 18)

vij =
N
∑

p=1

vp(rij)O
p
ij , (6)

where the first eight are given by

O
p=1−8
ij =

[

1, σ i · σ j, Sij, L · S
]

⊗
[

1, τ i · τ j
]

, (7)

with the spin-orbit contribution expressed in terms of the relative
angular momentum L = 1

2i (ri − rj) × (∇i − ∇j) and the total

spin S = 1
2 (σ i + σ j) of the pair. There are six additional charge-

independent operators corresponding to p = 9 − 14 that are
quadratic in L

O
p=9−14
ij =

[

L2, L2 σ i · σ j, (L · S)2
]

⊗
[

1, τ i · τ j
]

, (8)

while the p = 15− 18 are charge-independence breaking terms

O
p=15−18
ij =

[

Tij,Tij σ i · σ j,Tij Sij, τi,z + τj,z
]

. (9)

The AV18 model has a total of 42 independent parameters.
A simplex routine [21] was used to make an initial fit to the
phase shifts of the Nijmegen partial-wave analysis (PWA) [19],
followed by a final fit direct to the database, which contains 1,787
pp and 2,514 np observables for Elab up to 350MeV. The nn
scattering length and deuteron binding energy were also fit. The
final χ2/datum = 1.1 [3]. While the fit was made up to 350MeV,
the phase shifts are qualitatively good up to much larger energies,
E ≤ 600MeV [22].

Simplified versions of these interactions, including only a
subset of the operators in Equation (7), are available. For instance,
the Argonne v′8 (AV8′) contains a charge-independent eight-

operator projection,O
p=1−8
ij =

[

1, σ i · σ j, Sij, L · S
]

⊗
[

1, τ i · τ j
]

,

of the full NN potential, constructed to preserve the potential in
all S and P waves as well as the 3D1 and its coupling to the 3S1,
while over-binding the deuteron by 18 keV due to the omission
of electromagnetic terms [23]. The main missing features of these
simplified interactions is the lack of terms describing charge
and isospin symmetry breaking, as well as a slightly poorer
description of nucleon-nucleon scattering data in higher partial
waves. However, these contributions are very small, as outlined
in reference [23].

Already in the 1980s, accurate three-body calculations showed
that contemporary NN interactions did not provide enough
binding for the three-body nuclei, 3H and 3He [24]. In the late
1990s and early 2000s this realization was also extended to the
spectra (ground and low-lying excited states) of light p-shell
nuclei, for instance, in calculations based on QMC methods [25]
and in no-core shell-model studies [26]. Consequently, the
microscopic model with only NN interactions fit to scattering
data, without the inclusion of a 3N interaction, is no longer
considered realistic.

In addition to NN forces, sophisticated phenomenological
3N interactions have been then developed. They are generally

expressed as a sum of a TPE P-wave term, a TPE S-wave
contribution, a three-pion-exchange contribution, and a 3N
contact [4]. More specifically, two families of 3N interactions
were obtained in combination with the AV18 potential: the
Urbana IX (UIX) [27] and Illinois 7 (IL7) [28] models. The
UIX potential contains two parameters fit to reproduce the
ground-state energy of 3H and the saturation-point of symmetric
nuclear matter, while the IL7 potential involves five parameters
constrained on the low-lying spectra of nuclei in the mass
range A = 3− 10.

Despite their success in predicting a wide range of nuclear
properties [4], the phenomenological potentials suffer from
several drawbacks. For example, the resulting AV18+IL7
Hamiltonian leads to predictions of ≈ 100 ground- and excited-
state energies up to A = 12 in good agreement with the
corresponding empirical values. However, when used to compute
the neutron-star equation of state, such Hamiltonian does
not provide sufficient repulsion to guarantee the stability of
the observed stars against gravitational collapse [29]. On the
other end, the AV18+UIX model, while providing a reasonable
description of s-shell nuclei and nuclear matter properties, it
somewhat underbinds light p-shell nuclei.

Thus, in the context of the phenomenological nuclear
interactions, we do not have a Hamiltonian that can explain
the properties of all nuclear systems, from NN scattering
to dense nuclear and neutron matter. Furthermore, this
phenomenological approach does not provide a rigorous scheme
to consistently derive two- andmany-body forces and compatible
electroweak currents. In addition, there is no clear way to
properly assess the theoretical uncertainty associated with the
nuclear potentials and currents.

These shortcomings were addressed when a new phase in
the evolution of microscopic models began in the early 1990’s
with the emergence of χEFT [30–32]. χEFT is a low-energy
effective theory of QCD and provides the most general scheme
accommodating all possible interactions among nucleons and
pions (#-less χEFT) compatible with the relevant symmetries
and symmetry breakings—in particular chiral symmetry—of
low-energy QCD. In some modern approaches, the choice of
degrees of freedom also includes the # isobar (#-full χEFT),
because the#-nucleon mass splitting is only 300MeV ∼ 2mπ .

By its own nature, the χEFT formulation has an expansion
in powers of pion momenta as its organizing principle. Most
chiral interactions employed in recent nuclear structure and
reaction calculations are based on Weinberg power counting.
Within Weinberg power counting, the interactions are expanded
in powers of the typical momentum p over the breakdown
scale %b ∼ GeV, Q = p/%b, where the breakdown scale
denotes momenta at which the short distance structure becomes
important and cannot be neglected and absorbed into contact
interactions anymore (see references [33–36] for recent review
articles). It is important mentioning that alternative power-
counting schemes have been also suggested [37–42] but not
fully explored.

This expansion introduces an order by order scheme, defined
by the power ν of the expansion scale Q associated with each
interaction terms: leading order (LO) for ν = 0, next-to-leading
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→ can be written as a sum of eighteen operators (N = 18):
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improved, and how to quantify theoretical, i.e., systematic,
uncertainties related to the specific interaction model. Another
approach that became very popular in the last two decades consist
in deriving nuclear interactions within the framework of chiral
Effective Field Theory (χEFT). The advantage of this approach
is that it provides the necessary tools to systematically improve
the interaction models, to estimate uncertainties related to the
truncation of the chiral expansion, and to consistently derive
electroweak currents.

Several many-body methods have been developed to
numerical solve the many-body Schrödinger equation. Most
of them rely on basis expansions, for example the coupled
cluster method [5, 6], the no core shell model [7], the similarity
renormalization group [8], and the self consistent Green’s
function [9]. Each of these methods has distinct advantages,
and many are able to treat a wider variety of nuclear interaction
models. These many-body techniques are very effective and
achieve a good convergence only when relatively soft potentials
are used.

Quantum Monte Carlo (QMC) methods are ideally suited
to study strongly correlated many-body systems, and have no
difficulties in treating “stiff” nuclear interactions, but are limited
to nearly local nuclear potentials. For this reason, until fairly
recently, the applicability of QMC methods was limited to
phenomenological interactions, as χEFT Hamiltonians were
typically written inmomentum space. Over the past few years, the
situation has drastically changed with the development of local
χEFT potentials, both with [10, 11] and without explicit delta
degrees of freedom [12, 13], that have provided a way to combine
an EFT-based description of nuclear dynamics with precise QMC
techniques. In this work we will review selected results of nuclei
obtained using QMCmethods and chiral Hamiltonians.

2. NUCLEAR INTERACTIONS

The microscopic model of nuclear theory assumes that nuclear
systems can be described as point-like nucleons, whose dynamics
is characterized by a non-relativistic Hamiltonian

H =
∑

i

Ti +
∑

i<j

vij +
∑

i<j<k

Vijk + · · · , (1)

where Ti is the one-body kinetic energy operator, vij is the
nucleon-nucleon (NN) interaction between particles i and j, Vijk

is the three-nucleon (3N) interaction between particles i, j, and k,
and the ellipsis indicate interactions involving more than three
particles. There are indications that four-nucleon interactions
may contribute at the level of only ∼ 100 keV in 4He [14] or
pure neutron matter [15], and therefore are negligible compared
to NN and 3N components. Hence, current formulations of
the microscopic model do not typically include them (see, for
example, reference [4]).

The NN interaction term in the nuclear Hamiltonian is
the most studied of all, with thousands of experimental data
points at laboratory energies (Elab) from essentially zero to
hundreds of MeV. It consists of a long-range component, for
inter-nucleon separation r ! 2 fm, due to one-pion exchange

(OPE) [16], and intermediate- and short-range components, for,
respectively, 1 fm " r " 2 fm and r " 1 fm, derived,
up to the mid 1990’s, almost exclusively from meson-exchange
phenomenology [3, 17, 18]. These models fit the large amount of
empirical information about NN scattering data contained in the
Nijmegen database [19], available at the time, with a χ2/datum "
1 for Elab up to pion-production threshold. Two well-known and
still widely used examples in this class of NN interactions are the
CD-Bonn [18] and the Argonne v18 (AV18) [3] potentials.

The AV18 interaction is a local, configuration-space NN
potential that has been extensively and successfully used in
a number of QMC calculations. It is expressed as a sum
of electromagnetic and OPE terms and phenomenological
intermediate- and short-range parts:

vij = v
γ
ij + vπij + vIij + vSij . (2)

The electromagnetic term v
γ
ij has one- and two-photon exchange

Coulomb interaction, vacuum polarization, Darwin-Foldy, and
magnetic moment terms, with appropriate form factors that keep
terms finite at r = 0 (see reference [3] for more details). The
OPE part includes the charge-dependent (CD) terms due to the
difference in neutral (mπ0 ) and charged pion (mπ± ) masses, and
in coordinate-space it reads

vπij =
[

vπστ (r) σ i · σ j + vπtτ (r) Sij
]

τ i · τ j +
[

vπσT(r) σ i · σ j + vπtT(r) Sij
]

Tij ,

(3)

where σ adn τ are the Pauli matrices that operate over the spin
and isospin of particles, and Sij = 3 σ i · r̂ij σ j · r̂ij − σ i · σ j and
Tij = 3 τizτjz − τ i · τ j are the tensor and isotensor operators,
respectively. The functions, vπστ (r), v

π
tτ (r), v

π ,
σT(r), and vπtT(r) are

defined as

vπστ (r) =
Y0(r)+ 2Y+(r)

3
, vπtτ (r) =

T0(r)+ 2T+(r)

3
,

vπσT(r) =
Y0(q)− Y+(r)

3
, vπtT(r) =

T0(r)− T+(r)

3
, (4)

where Yα(r) and Tα(r) are the Yukawa and tensor functions
given by

Yα(r) =
g2A
12π

m3
πα

(2 fπ )2
e−xα

xα
, Tα(r) = Yα(r)

(

1+
3

xα
+

3

x2α

)

,

(5)

with xα = mπα r, and gA = 1.267, fπ = 92.4MeV being the
axial-vector coupling constant of the nucleon and the pion decay
constant, respectively.

The intermediate-range region, vIij, is parametrized in terms of

two-pion exchange (TPE), based on, but not consistently derived
from, a field-theory analysis of box diagrams with intermediate
nucleons and ' isobars [20]. The short-range region, vSij, is

instead represented by spin-isospin and momentum-dependent
operators multiplied by Woods-Saxon radial functions [3].
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improved, and how to quantify theoretical, i.e., systematic,
uncertainties related to the specific interaction model. Another
approach that became very popular in the last two decades consist
in deriving nuclear interactions within the framework of chiral
Effective Field Theory (χEFT). The advantage of this approach
is that it provides the necessary tools to systematically improve
the interaction models, to estimate uncertainties related to the
truncation of the chiral expansion, and to consistently derive
electroweak currents.

Several many-body methods have been developed to
numerical solve the many-body Schrödinger equation. Most
of them rely on basis expansions, for example the coupled
cluster method [5, 6], the no core shell model [7], the similarity
renormalization group [8], and the self consistent Green’s
function [9]. Each of these methods has distinct advantages,
and many are able to treat a wider variety of nuclear interaction
models. These many-body techniques are very effective and
achieve a good convergence only when relatively soft potentials
are used.

Quantum Monte Carlo (QMC) methods are ideally suited
to study strongly correlated many-body systems, and have no
difficulties in treating “stiff” nuclear interactions, but are limited
to nearly local nuclear potentials. For this reason, until fairly
recently, the applicability of QMC methods was limited to
phenomenological interactions, as χEFT Hamiltonians were
typically written inmomentum space. Over the past few years, the
situation has drastically changed with the development of local
χEFT potentials, both with [10, 11] and without explicit delta
degrees of freedom [12, 13], that have provided a way to combine
an EFT-based description of nuclear dynamics with precise QMC
techniques. In this work we will review selected results of nuclei
obtained using QMCmethods and chiral Hamiltonians.

2. NUCLEAR INTERACTIONS

The microscopic model of nuclear theory assumes that nuclear
systems can be described as point-like nucleons, whose dynamics
is characterized by a non-relativistic Hamiltonian

H =
∑

i

Ti +
∑

i<j

vij +
∑

i<j<k

Vijk + · · · , (1)

where Ti is the one-body kinetic energy operator, vij is the
nucleon-nucleon (NN) interaction between particles i and j, Vijk

is the three-nucleon (3N) interaction between particles i, j, and k,
and the ellipsis indicate interactions involving more than three
particles. There are indications that four-nucleon interactions
may contribute at the level of only ∼ 100 keV in 4He [14] or
pure neutron matter [15], and therefore are negligible compared
to NN and 3N components. Hence, current formulations of
the microscopic model do not typically include them (see, for
example, reference [4]).

The NN interaction term in the nuclear Hamiltonian is
the most studied of all, with thousands of experimental data
points at laboratory energies (Elab) from essentially zero to
hundreds of MeV. It consists of a long-range component, for
inter-nucleon separation r ! 2 fm, due to one-pion exchange

(OPE) [16], and intermediate- and short-range components, for,
respectively, 1 fm " r " 2 fm and r " 1 fm, derived,
up to the mid 1990’s, almost exclusively from meson-exchange
phenomenology [3, 17, 18]. These models fit the large amount of
empirical information about NN scattering data contained in the
Nijmegen database [19], available at the time, with a χ2/datum "
1 for Elab up to pion-production threshold. Two well-known and
still widely used examples in this class of NN interactions are the
CD-Bonn [18] and the Argonne v18 (AV18) [3] potentials.

The AV18 interaction is a local, configuration-space NN
potential that has been extensively and successfully used in
a number of QMC calculations. It is expressed as a sum
of electromagnetic and OPE terms and phenomenological
intermediate- and short-range parts:

vij = v
γ
ij + vπij + vIij + vSij . (2)

The electromagnetic term v
γ
ij has one- and two-photon exchange

Coulomb interaction, vacuum polarization, Darwin-Foldy, and
magnetic moment terms, with appropriate form factors that keep
terms finite at r = 0 (see reference [3] for more details). The
OPE part includes the charge-dependent (CD) terms due to the
difference in neutral (mπ0 ) and charged pion (mπ± ) masses, and
in coordinate-space it reads

vπij =
[

vπστ (r) σ i · σ j + vπtτ (r) Sij
]

τ i · τ j +
[

vπσT(r) σ i · σ j + vπtT(r) Sij
]

Tij ,

(3)

where σ adn τ are the Pauli matrices that operate over the spin
and isospin of particles, and Sij = 3 σ i · r̂ij σ j · r̂ij − σ i · σ j and
Tij = 3 τizτjz − τ i · τ j are the tensor and isotensor operators,
respectively. The functions, vπστ (r), v

π
tτ (r), v

π ,
σT(r), and vπtT(r) are

defined as

vπστ (r) =
Y0(r)+ 2Y+(r)

3
, vπtτ (r) =

T0(r)+ 2T+(r)

3
,

vπσT(r) =
Y0(q)− Y+(r)

3
, vπtT(r) =

T0(r)− T+(r)

3
, (4)

where Yα(r) and Tα(r) are the Yukawa and tensor functions
given by

Yα(r) =
g2A
12π

m3
πα

(2 fπ )2
e−xα

xα
, Tα(r) = Yα(r)

(

1+
3

xα
+

3

x2α

)

,

(5)

with xα = mπα r, and gA = 1.267, fπ = 92.4MeV being the
axial-vector coupling constant of the nucleon and the pion decay
constant, respectively.

The intermediate-range region, vIij, is parametrized in terms of

two-pion exchange (TPE), based on, but not consistently derived
from, a field-theory analysis of box diagrams with intermediate
nucleons and ' isobars [20]. The short-range region, vSij, is

instead represented by spin-isospin and momentum-dependent
operators multiplied by Woods-Saxon radial functions [3].
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improved, and how to quantify theoretical, i.e., systematic,
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H =
∑

i

Ti +
∑

i<j

vij +
∑

i<j<k

Vijk + · · · , (1)
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γ
ij + vπij + vIij + vSij . (2)
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Tij = 3 τizτjz − τ i · τ j are the tensor and isotensor operators,
respectively. The functions, vπστ (r), v
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given by
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with xα = mπα r, and gA = 1.267, fπ = 92.4MeV being the
axial-vector coupling constant of the nucleon and the pion decay
constant, respectively.

The intermediate-range region, vIij, is parametrized in terms of

two-pion exchange (TPE), based on, but not consistently derived
from, a field-theory analysis of box diagrams with intermediate
nucleons and ' isobars [20]. The short-range region, vSij, is

instead represented by spin-isospin and momentum-dependent
operators multiplied by Woods-Saxon radial functions [3].
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The AV18 model can be written as an overall sum of eighteen
operators (N = 18)

vij =
N
∑

p=1

vp(rij)O
p
ij , (6)

where the first eight are given by

O
p=1−8
ij =

[

1, σ i · σ j, Sij, L · S
]

⊗
[

1, τ i · τ j
]

, (7)

with the spin-orbit contribution expressed in terms of the relative
angular momentum L = 1

2i (ri − rj) × (∇i − ∇j) and the total

spin S = 1
2 (σ i + σ j) of the pair. There are six additional charge-

independent operators corresponding to p = 9 − 14 that are
quadratic in L

O
p=9−14
ij =

[

L2, L2 σ i · σ j, (L · S)2
]

⊗
[

1, τ i · τ j
]

, (8)

while the p = 15− 18 are charge-independence breaking terms

O
p=15−18
ij =

[

Tij,Tij σ i · σ j,Tij Sij, τi,z + τj,z
]

. (9)

The AV18 model has a total of 42 independent parameters.
A simplex routine [21] was used to make an initial fit to the
phase shifts of the Nijmegen partial-wave analysis (PWA) [19],
followed by a final fit direct to the database, which contains 1,787
pp and 2,514 np observables for Elab up to 350MeV. The nn
scattering length and deuteron binding energy were also fit. The
final χ2/datum = 1.1 [3]. While the fit was made up to 350MeV,
the phase shifts are qualitatively good up to much larger energies,
E ≤ 600MeV [22].

Simplified versions of these interactions, including only a
subset of the operators in Equation (7), are available. For instance,
the Argonne v′8 (AV8′) contains a charge-independent eight-

operator projection,O
p=1−8
ij =

[

1, σ i · σ j, Sij, L · S
]

⊗
[

1, τ i · τ j
]

,

of the full NN potential, constructed to preserve the potential in
all S and P waves as well as the 3D1 and its coupling to the 3S1,
while over-binding the deuteron by 18 keV due to the omission
of electromagnetic terms [23]. The main missing features of these
simplified interactions is the lack of terms describing charge
and isospin symmetry breaking, as well as a slightly poorer
description of nucleon-nucleon scattering data in higher partial
waves. However, these contributions are very small, as outlined
in reference [23].

Already in the 1980s, accurate three-body calculations showed
that contemporary NN interactions did not provide enough
binding for the three-body nuclei, 3H and 3He [24]. In the late
1990s and early 2000s this realization was also extended to the
spectra (ground and low-lying excited states) of light p-shell
nuclei, for instance, in calculations based on QMC methods [25]
and in no-core shell-model studies [26]. Consequently, the
microscopic model with only NN interactions fit to scattering
data, without the inclusion of a 3N interaction, is no longer
considered realistic.

In addition to NN forces, sophisticated phenomenological
3N interactions have been then developed. They are generally

expressed as a sum of a TPE P-wave term, a TPE S-wave
contribution, a three-pion-exchange contribution, and a 3N
contact [4]. More specifically, two families of 3N interactions
were obtained in combination with the AV18 potential: the
Urbana IX (UIX) [27] and Illinois 7 (IL7) [28] models. The
UIX potential contains two parameters fit to reproduce the
ground-state energy of 3H and the saturation-point of symmetric
nuclear matter, while the IL7 potential involves five parameters
constrained on the low-lying spectra of nuclei in the mass
range A = 3− 10.

Despite their success in predicting a wide range of nuclear
properties [4], the phenomenological potentials suffer from
several drawbacks. For example, the resulting AV18+IL7
Hamiltonian leads to predictions of ≈ 100 ground- and excited-
state energies up to A = 12 in good agreement with the
corresponding empirical values. However, when used to compute
the neutron-star equation of state, such Hamiltonian does
not provide sufficient repulsion to guarantee the stability of
the observed stars against gravitational collapse [29]. On the
other end, the AV18+UIX model, while providing a reasonable
description of s-shell nuclei and nuclear matter properties, it
somewhat underbinds light p-shell nuclei.

Thus, in the context of the phenomenological nuclear
interactions, we do not have a Hamiltonian that can explain
the properties of all nuclear systems, from NN scattering
to dense nuclear and neutron matter. Furthermore, this
phenomenological approach does not provide a rigorous scheme
to consistently derive two- andmany-body forces and compatible
electroweak currents. In addition, there is no clear way to
properly assess the theoretical uncertainty associated with the
nuclear potentials and currents.

These shortcomings were addressed when a new phase in
the evolution of microscopic models began in the early 1990’s
with the emergence of χEFT [30–32]. χEFT is a low-energy
effective theory of QCD and provides the most general scheme
accommodating all possible interactions among nucleons and
pions (#-less χEFT) compatible with the relevant symmetries
and symmetry breakings—in particular chiral symmetry—of
low-energy QCD. In some modern approaches, the choice of
degrees of freedom also includes the # isobar (#-full χEFT),
because the#-nucleon mass splitting is only 300MeV ∼ 2mπ .

By its own nature, the χEFT formulation has an expansion
in powers of pion momenta as its organizing principle. Most
chiral interactions employed in recent nuclear structure and
reaction calculations are based on Weinberg power counting.
Within Weinberg power counting, the interactions are expanded
in powers of the typical momentum p over the breakdown
scale %b ∼ GeV, Q = p/%b, where the breakdown scale
denotes momenta at which the short distance structure becomes
important and cannot be neglected and absorbed into contact
interactions anymore (see references [33–36] for recent review
articles). It is important mentioning that alternative power-
counting schemes have been also suggested [37–42] but not
fully explored.

This expansion introduces an order by order scheme, defined
by the power ν of the expansion scale Q associated with each
interaction terms: leading order (LO) for ν = 0, next-to-leading
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while the p = 15− 18 are charge-independence breaking terms
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p=15−18
ij =
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Tij,Tij σ i · σ j,Tij Sij, τi,z + τj,z
]

. (9)

The AV18 model has a total of 42 independent parameters.
A simplex routine [21] was used to make an initial fit to the
phase shifts of the Nijmegen partial-wave analysis (PWA) [19],
followed by a final fit direct to the database, which contains 1,787
pp and 2,514 np observables for Elab up to 350MeV. The nn
scattering length and deuteron binding energy were also fit. The
final χ2/datum = 1.1 [3]. While the fit was made up to 350MeV,
the phase shifts are qualitatively good up to much larger energies,
E ≤ 600MeV [22].

Simplified versions of these interactions, including only a
subset of the operators in Equation (7), are available. For instance,
the Argonne v′8 (AV8′) contains a charge-independent eight-

operator projection,O
p=1−8
ij =

[

1, σ i · σ j, Sij, L · S
]

⊗
[

1, τ i · τ j
]

,

of the full NN potential, constructed to preserve the potential in
all S and P waves as well as the 3D1 and its coupling to the 3S1,
while over-binding the deuteron by 18 keV due to the omission
of electromagnetic terms [23]. The main missing features of these
simplified interactions is the lack of terms describing charge
and isospin symmetry breaking, as well as a slightly poorer
description of nucleon-nucleon scattering data in higher partial
waves. However, these contributions are very small, as outlined
in reference [23].

Already in the 1980s, accurate three-body calculations showed
that contemporary NN interactions did not provide enough
binding for the three-body nuclei, 3H and 3He [24]. In the late
1990s and early 2000s this realization was also extended to the
spectra (ground and low-lying excited states) of light p-shell
nuclei, for instance, in calculations based on QMC methods [25]
and in no-core shell-model studies [26]. Consequently, the
microscopic model with only NN interactions fit to scattering
data, without the inclusion of a 3N interaction, is no longer
considered realistic.

In addition to NN forces, sophisticated phenomenological
3N interactions have been then developed. They are generally

expressed as a sum of a TPE P-wave term, a TPE S-wave
contribution, a three-pion-exchange contribution, and a 3N
contact [4]. More specifically, two families of 3N interactions
were obtained in combination with the AV18 potential: the
Urbana IX (UIX) [27] and Illinois 7 (IL7) [28] models. The
UIX potential contains two parameters fit to reproduce the
ground-state energy of 3H and the saturation-point of symmetric
nuclear matter, while the IL7 potential involves five parameters
constrained on the low-lying spectra of nuclei in the mass
range A = 3− 10.

Despite their success in predicting a wide range of nuclear
properties [4], the phenomenological potentials suffer from
several drawbacks. For example, the resulting AV18+IL7
Hamiltonian leads to predictions of ≈ 100 ground- and excited-
state energies up to A = 12 in good agreement with the
corresponding empirical values. However, when used to compute
the neutron-star equation of state, such Hamiltonian does
not provide sufficient repulsion to guarantee the stability of
the observed stars against gravitational collapse [29]. On the
other end, the AV18+UIX model, while providing a reasonable
description of s-shell nuclei and nuclear matter properties, it
somewhat underbinds light p-shell nuclei.

Thus, in the context of the phenomenological nuclear
interactions, we do not have a Hamiltonian that can explain
the properties of all nuclear systems, from NN scattering
to dense nuclear and neutron matter. Furthermore, this
phenomenological approach does not provide a rigorous scheme
to consistently derive two- andmany-body forces and compatible
electroweak currents. In addition, there is no clear way to
properly assess the theoretical uncertainty associated with the
nuclear potentials and currents.

These shortcomings were addressed when a new phase in
the evolution of microscopic models began in the early 1990’s
with the emergence of χEFT [30–32]. χEFT is a low-energy
effective theory of QCD and provides the most general scheme
accommodating all possible interactions among nucleons and
pions (#-less χEFT) compatible with the relevant symmetries
and symmetry breakings—in particular chiral symmetry—of
low-energy QCD. In some modern approaches, the choice of
degrees of freedom also includes the # isobar (#-full χEFT),
because the#-nucleon mass splitting is only 300MeV ∼ 2mπ .

By its own nature, the χEFT formulation has an expansion
in powers of pion momenta as its organizing principle. Most
chiral interactions employed in recent nuclear structure and
reaction calculations are based on Weinberg power counting.
Within Weinberg power counting, the interactions are expanded
in powers of the typical momentum p over the breakdown
scale %b ∼ GeV, Q = p/%b, where the breakdown scale
denotes momenta at which the short distance structure becomes
important and cannot be neglected and absorbed into contact
interactions anymore (see references [33–36] for recent review
articles). It is important mentioning that alternative power-
counting schemes have been also suggested [37–42] but not
fully explored.

This expansion introduces an order by order scheme, defined
by the power ν of the expansion scale Q associated with each
interaction terms: leading order (LO) for ν = 0, next-to-leading
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of the full NN potential, constructed to preserve the potential in
all S and P waves as well as the 3D1 and its coupling to the 3S1,
while over-binding the deuteron by 18 keV due to the omission
of electromagnetic terms [23]. The main missing features of these
simplified interactions is the lack of terms describing charge
and isospin symmetry breaking, as well as a slightly poorer
description of nucleon-nucleon scattering data in higher partial
waves. However, these contributions are very small, as outlined
in reference [23].

Already in the 1980s, accurate three-body calculations showed
that contemporary NN interactions did not provide enough
binding for the three-body nuclei, 3H and 3He [24]. In the late
1990s and early 2000s this realization was also extended to the
spectra (ground and low-lying excited states) of light p-shell
nuclei, for instance, in calculations based on QMC methods [25]
and in no-core shell-model studies [26]. Consequently, the
microscopic model with only NN interactions fit to scattering
data, without the inclusion of a 3N interaction, is no longer
considered realistic.

In addition to NN forces, sophisticated phenomenological
3N interactions have been then developed. They are generally

expressed as a sum of a TPE P-wave term, a TPE S-wave
contribution, a three-pion-exchange contribution, and a 3N
contact [4]. More specifically, two families of 3N interactions
were obtained in combination with the AV18 potential: the
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UIX potential contains two parameters fit to reproduce the
ground-state energy of 3H and the saturation-point of symmetric
nuclear matter, while the IL7 potential involves five parameters
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properties [4], the phenomenological potentials suffer from
several drawbacks. For example, the resulting AV18+IL7
Hamiltonian leads to predictions of ≈ 100 ground- and excited-
state energies up to A = 12 in good agreement with the
corresponding empirical values. However, when used to compute
the neutron-star equation of state, such Hamiltonian does
not provide sufficient repulsion to guarantee the stability of
the observed stars against gravitational collapse [29]. On the
other end, the AV18+UIX model, while providing a reasonable
description of s-shell nuclei and nuclear matter properties, it
somewhat underbinds light p-shell nuclei.

Thus, in the context of the phenomenological nuclear
interactions, we do not have a Hamiltonian that can explain
the properties of all nuclear systems, from NN scattering
to dense nuclear and neutron matter. Furthermore, this
phenomenological approach does not provide a rigorous scheme
to consistently derive two- andmany-body forces and compatible
electroweak currents. In addition, there is no clear way to
properly assess the theoretical uncertainty associated with the
nuclear potentials and currents.

These shortcomings were addressed when a new phase in
the evolution of microscopic models began in the early 1990’s
with the emergence of χEFT [30–32]. χEFT is a low-energy
effective theory of QCD and provides the most general scheme
accommodating all possible interactions among nucleons and
pions (#-less χEFT) compatible with the relevant symmetries
and symmetry breakings—in particular chiral symmetry—of
low-energy QCD. In some modern approaches, the choice of
degrees of freedom also includes the # isobar (#-full χEFT),
because the#-nucleon mass splitting is only 300MeV ∼ 2mπ .

By its own nature, the χEFT formulation has an expansion
in powers of pion momenta as its organizing principle. Most
chiral interactions employed in recent nuclear structure and
reaction calculations are based on Weinberg power counting.
Within Weinberg power counting, the interactions are expanded
in powers of the typical momentum p over the breakdown
scale %b ∼ GeV, Q = p/%b, where the breakdown scale
denotes momenta at which the short distance structure becomes
important and cannot be neglected and absorbed into contact
interactions anymore (see references [33–36] for recent review
articles). It is important mentioning that alternative power-
counting schemes have been also suggested [37–42] but not
fully explored.

This expansion introduces an order by order scheme, defined
by the power ν of the expansion scale Q associated with each
interaction terms: leading order (LO) for ν = 0, next-to-leading
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Fig. 1. – Two-pion exchange terms in the Illinois NNN potentials.

Op=1,14
ij = [1,σi · σj , Sij ,L · S,L2,L2σi · σj , (L · S)2]⊗ [1, τi · τj ] ,(9)

where vp(r) has short-, intermediate-, and long-range components. The long-range com-
ponents are just the Y (r) and T (r) of the one-pion potential and are present only for
those operators that have contributions from one-pion exchange. The intermediate-range
components are proportional to T 2(r) and the short-range component is of the Woods-
Saxon form.

Finally, vCIB
ij is the strong charge independence breaking part of the potential and

consists of four operators:

Op=15,18
ij = [1, (σi · σj), Sij ]⊗ Tij , (τzi + τzj) .(10)

The long-range part of Op=15,17 comes from one-pion exchange by inserting mπ+− or
mπ0 in Eqn. (3 and 4) and using f2

πNN ∝ mπ.
The parameters in the short- and intermediate-range components were determined by

making a direct fit to the 1993 Nijmegen data base [6, 7] containing 1787 pp and 2514 np
data in the range 0 − 350 MeV, the nn scattering length, and deuteron binding energy.
The fit of approximately 40 parameters results in a χ2/d.o.f. of 1.09, which is typical of
1990’s NN potentials.

2
.2. Illinois Vijk . – The three-nucleon potential used for most of the examples pre-

sented here is the Illinois-2 [8]. It consists of two- and three-pion terms and a simple
phenomenological repulsive term:

Vijk = V 2π
ijk + V 3π

ijk + V R
ijk .(11)

The two-pion term, illustrated in Fig. 1, contains P - and S-wave πN -scattering terms:

V 2π
ijk = V 2π,P

ijk + V 2π,S
ijk .(12)

The P -wave term (left panel of Fig. 1) is the well-known Fujita-Miyazawa [9, 10] term
which is present in all realistic NNN potentials. It has the form

V 2π,P
ijk = A2π,P

∑

cyclic

{Xij , Xjk}{τi · τj , τj · τk}+
1

4
[Xij , Xjk][τi · τj , τj · τk] ,(13)
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Fig. 2. – Three-pion ring terms in the Illinois NNN potentials.

where Xij is defined in Eq. (4). This is the longest-ranged nuclear NNN potential and
is attractive in all nuclei and nuclear matter. However it is very small or even slightly
repulsive in pure neutron systems.

The second panel of Fig. 1 represents the S-wave part of V 2π
ijk . This term was intro-

duced in the Tuscon-MelbourneNNN potential [11] and is required by chiral perturbation
theory. However, in practice it is only 3%–4% of V 2π,P

ijk in light nuclei.

The three-pion term (Fig. 2) was introduced in the Illinois potentials. It consists of
the subset of three-pion rings that contain only one ∆ mass in the energy denominators.
Even so it has a quite complicated form which is given in Ref. [8]. An important aspect
of this structure is that there is a significant attractive term which acts only in T=3/2
triples. In most light nuclei 〈V 3π

ijk〉 ! 0.1〈V 2π
ijk〉

The final term in the NNN potential, V R
ijk, represents all other diagrams including

relativistic effects. It is strictly phenomenological and purely central and repulsive:

V R
ijk = AR

∑

cyclic

T 2(mπrij)T
2(mπrjk) .(14)

This repulsive term is principally needed to make nuclear matter saturate at the proper
density instead of a too-high density and to obtain a hard enough equation of state for
neutron matter.

The coupling constants A2π,P , A3π, and AR were adjusted to fit 17 nuclear levels for
A ≤ 8. The V 2π,S

ijk is too weak to be determined by fitting and its coupling was left at
the value predicted by chiral perturbation theory.

In light nuclei we find

〈Vijk〉 ∼ (0.02 to 0.09)〈vij〉 ∼ (0.15 to 0.6)〈H〉(15)

where the large fraction of 〈H〉 is due to a large cancellation of K and vij . From this we
expect

〈V4N 〉 ∼ 0.06〈Vijk〉 ∼ (0.02 to 0.04)〈H〉 ∼ (0.5 to 2.) MeV .(16)

This is comparable to the accuracy of our calculations. Even if more accurate calculations
could be made, it would probably not be possible to disentangle four-nucleon potential
effects from uncertainties in the fitted parameters of Vijk .
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Chiral EFT forces

Hergert Ab initio Nuclear Many-Body Theory

FIGURE 2 | Chiral two-, three-, and four nucleon forces through next-to-next-to-next-to-leading order (N3LO) (see, e.g., [2, 37, 38]). Dashed lines represent pion

exchanges between nucleons. The large solid circles, boxes and diamonds represent vertices that are proportional to low-energy constants (LECs) of the theory (see

text).

and Equation (2) becomes a system of flow equations for the
coupling coefficients:

d

ds
Hi(s) = fi(c, η(s),H(s)) , (8)

where the bold quantities collect the algebra’s structure constants
and the running couplings, respectively. From this discussion, it
is clear that the choice of the Oi can have a significant effect on
the size of the system of flow equations, as well as the quality of
any introduced truncations.

An important application of the SRG in nuclear many-body
theory is the dialing of the operators’ resolution scales. This is
achieved by using the Wegner-type generator

η(λ) = [T,H(λ)] (9)

to band-diagonalize the Hamiltonian in momentum space, and
thereby decouple low- and high-momentum physics in the
operators and eigenstates. As indicated in Equation (9) the flow

is typically re-parameterized by λ = s−1/4, which characterizes
the width of the band in momentum space and controls the
magnitude of the momentum transferred in an interaction
process. For example, |ki − kf | ! λ in a two-nucleon system
[1, 58].

Nowadays, the momentum space evolution is regularly
performed for two- and three-nucleon forces [1, 59–62]. In light
of the previous discussion, it can be understood as choosing the
operator basis

B = {a†paq, a
†
pa
†
qasar , a

†
pa
†
qa
†
r auatas, . . .}pqrstu...∈N , (10)

with creation and annihilation operators referring to
(discretized) single-particle momentum modes, and truncating
four- and higher-body terms that appear when the commutators
of the basis operators are evaluated. Since the commutator of an
M-body and an N-body operator in the basis (10) acts at least
on K = max(M,N) particles, the SRG evolution is exact for
A ≤ 3 systems under this truncation [59, 61]. It is implemented
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LECs: low-energy
couplings

LO: leading order

NLO: next-to-leading
order

NxLO:
x times

︷ ︸︸ ︷
next−to− · · · -leading
order

according to their importance, typically in powers of p/!b, where p is a typical momentum scale
in the nuclear system. The resulting scheme is valid only when p " !b.

The most general EFT Lagrangian contains an in!nite series of interaction terms,

V =
∞∑

ν=0

V ν ({Cν
i })

(
p

!b

)ν

, 4.

where V ν ({Cν
i }) is the contribution at order ν, which depends on low-energy couplings (LECs)

{Cν
i }. The LECs encode the unresolved physics that is integrated out and are determined by !t-

ting experimental data. In a converging EFT, the LECs are natural (i.e., of order one); thus, the
higher-order contributions toV decrease in magnitude. This permits the truncation of the series
expansion at a certain order ν. By going to higher orders, one can work to a desired accuracy at the
cost of computing more diagrams. In this review, we denote leading order by LO; next-to-leading
order by NLO; and next-to-. . .-leading order by NxLO, with x the number of orders beyond LO.
This systematic expansion can be used to estimate meaningful theoretical uncertainties. Another
advantage of nuclear EFTs is that the procedure described above leads to the natural appearance
of many-body forces.

At very low momentum scales, p " mπ , pions can be integrated out and nuclear interactions
reduce to contact interactions with different numbers of derivatives.QMC calculations with pion-
less EFT interaction have been used to analyze lattice QCD calculations with great success (29,
30). For example, a pionless EFT Hamiltonian was used in AFDMC calculations aimed at ex-
tending lattice QCD predictions to 16O (29). LO results indicate that for mπ = 805 MeV and
mπ = 510 MeV, 16O is not stable against breakup into four 4He nuclei. We refer the reader to
References 10 and 11 for more details on pionless EFT.

While pionless EFT has been used successfully in low-energy nuclear physics (e.g., 31), typi-
cal momenta in nuclear many-body systems are of the order of mπ and, therefore, larger than its
breakdown scale. Chiral EFT is based on the observation that pions naturally emerge as pseudo-
Goldstone bosons associated with the spontaneous breaking of the approximate chiral symmetry
of QCD. Within this so-called pionfull chiral EFT (11, 12), nuclear interactions are comprised
of both contact terms, written in a general operator basis, and one- and multipion-exchange in-
teractions. Modern chiral EFT interactions are based on Weinberg power counting (32, 33), but
alternative power-counting schemes have been suggested (e.g., 34–38).

At LO, the contact interactions are given by the momentum-independent contributions

V ν=0
cont = C11 +Cσ σ1 · σ2 +Cττ1 · τ2 +Cστσ1 · σ2τ1 · τ2, 5.

and the pion-exchange interactions are given by the well-known OPE potential,

V ν=0
π (p,p′ ) = −

(
gA
2 fπ

)2
σ1 ·q σ2 ·q
q2 +m2

π

τ1 · τ2, 6.

where p and p′ are the relative nucleonmomenta before and after the interaction, and q = p − p′ is
themomentum transfer. At higher orders,more complicated interaction pieces contribute, namely
momentum-dependent contacts ∼pν and p′ν , tensor contacts, and multipion exchanges; we refer
the reader to References 11 and 12 for more details. For example, at N3LO theNN operator basis
includes a set of operators similar to the phenomenological ones of Equation 3, but the operators
in the contact and pion sector appear in a systematic fashion. A chief advantage of the chiral EFT
formulation is that 3N interactions are consistent with theNN potential; that is, the same vertices
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… an infinite series of interaction terms. A power-counting scheme (ChPT) arranges the terms according 
to their importance, in powers of p/Λb. Typical momentum scale p (or pion mass), and chiral symmetry 
breaking scale Λb.



one-pion exchange (1PE), also shown in the first row of
figure 1.

In spite of its simplicity, this rough description contains
some of the main attributes of the NN force. First, through the
1PE it generates the tensor component of the force known to
be crucial for the two-nucleon bound state. Second, it predict
correctly NN phase parameters for high partial waves. At LO,
the two terms which result from a partial-wave expansion of
the contact term impact states of zero orbital angular
momentum and produce attraction at short- and intermediate-
range.

Notice that that there are no terms with power O � 1, as
they would violate parity conservation and time-reversal
invariance.

The next order is then O � 2, next-to-leading order,
or NLO.

Note that the two-pion exchange (2PE) makes its first
appearance at this order, and thus it is referred to as the
‘leading 2PE’. As is well known from decades of nuclear

physics, this contribution is essential for a realistic account of
the intermediate-range attraction. However, the leading 2PE
has insufficient strength, for the following reason: the loops
present in the diagrams which involve pions carry the power
O � 2 (see equation (27)), and so only QNN and QQNN
vertices with% � 0i are allowed at this order. These vertices
are known to be weak. Moreover, seven new contacts appear
at this order which impact L=0 and L=1 states. (As
always, two-nucleon contact terms are indicated by four-
nucleon-leg diagrams and a vertex of appropriate shape, in
this case a solid square.) At this power, the appropriate
operators include spin–orbit, central, spin–spin, and tensor
terms, namely all the spin and isospin operator structures
needed for a realistic description of the 2NF, although the
medium-range attraction still lacks sufficient strength.

At the next order, O � 3 or next-to-next-to-leading order
(NNLO), the 2PE contains the so-called QQNN seagull ver-
tices with two derivatives. These vertices (proportional to the
ci LECs and denoted by a large solid dot in figure 1), bring in

Figure 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid dots, solid
squares, triangles, diamonds, and stars denote vertices of index % � 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.
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Quantum Monte Carlo Calculations

Variational Monte Carlo (VMC)

… start with a trial wave function which contains a number of variational parameters. These parameters 
are varied to minimize the expectation value of the Hamiltonian:
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VMC: variational
Monte Carlo

4.1. Variational Monte Carlo
The variational Monte Carlo (VMC) method is used to calculate observables (e.g., the energy)
of a many-body system once a suitable guess for its wave function !T (the trial wave function) is
provided. The variational energy EV of an A-nucleon system is given by

EV = 〈!T |H |!T 〉
〈!T |!T 〉

=
∑

στ

∫
dR!†

T (R, σ , τ )H!T (R, σ , τ )
∑

στ

∫
dR!†

T (R, σ , τ )!T (R, σ , τ )
, 13.

where R = {r1 . . . rN }, σ = {σ1 . . . σN }, and τ = {τ1 . . . τN } include all particles’ positions ri, spins
σi, and isospins τi, and H is the nuclear Hamiltonian. The energy EV provides an upper bound
to the ground-state energy E0 and is equal to E0 only if !T coincides with the true ground-state
wave function of the system, |!T 〉 = |!0〉. The calculation of EV requires the numerical evaluation
of a multidimensional integral, but the high dimensionality limits standard numerical integration
techniques to very small systems.

Monte Carlo integration is a natural solution to this limitation. Equation 13 can be rewritten
as

EV =
∑

στ

∫
dRP(R, σ , τ )H!T (R,σ ,τ )

!T (R,σ ,τ )∑
στ

∫
dRP(R, σ , τ )

, 14.

where the function P(R, σ , τ ) is a probability distribution, and one natural choice is P(R, σ , τ ) =
!†
T (R, σ , τ )!T (R, σ , τ ). In the VMC method, P is used to sample a set of M con!gurations in

{R, σ , τ } space that are used to estimate the integral above. A common way to generate such con-
!gurations is provided by the Metropolis algorithm, but many others are available (e.g., 93).

For strongly interacting systems, a common ansatz for a variational wave function is
|!T 〉 = F̂ |$〉. The correlation operator F̂ , modeling the short-range correlations induced by the
Hamiltonian, can generically be written as

F̂ =




∏

i< j

fc(ri j )







S
∏

i< j

(
1 + Fi j

)


 , 15.

where we have omitted three-body correlations for simplicity. In the above equation, fc(r) is a
spin/isospin-independent correlation, and

Fi j = fτ (ri j )τ i · τ j + fσ (ri j )σ i · σ j + fστ (ri j )σ i · σ jτ i · τ j + ft (ri j )Si j + ftτ (ri j )Si jτ i · τ j. 16.

Evaluating the symmetrization operator S would require a factorial number of operations. In
practice, the order of pairs for the left and right wave functions is instead sampled for each con-
!guration. The radial correlations { fi(r)} (i = τ , σ , στ , t, tτ ) include variational parameters that
are chosen in order to minimize EV.

The long-range antisymmetric part |$〉 is typically built from combinations of single-particle
orbitals, appropriate for the nuclear system of interest. For homogeneous matter, the orbitals can
be plane waves or can also include pairing correlations (94). For nuclei, the single-particle orbitals
are generally states written in the l s or j j basis that are properly combined to give the desired total
angular momentum J and isospin T of the nucleus (95). Within the GFMC method, |$〉 consists
of a set of amplitudes, each representing a particular spin/isospin con!guration of the many-body
state. For example, the spin amplitudes for three neutrons and the amplitudes after a spin/spin

288 Lynn et al.
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→ numerical evaluation of a multidimensional integral!
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wave function of the system, |!T 〉 = |!0〉. The calculation of EV requires the numerical evaluation
of a multidimensional integral, but the high dimensionality limits standard numerical integration
techniques to very small systems.

Monte Carlo integration is a natural solution to this limitation. Equation 13 can be rewritten
as

EV =
∑

στ

∫
dRP(R, σ , τ )H!T (R,σ ,τ )

!T (R,σ ,τ )∑
στ

∫
dRP(R, σ , τ )

, 14.

where the function P(R, σ , τ ) is a probability distribution, and one natural choice is P(R, σ , τ ) =
!†
T (R, σ , τ )!T (R, σ , τ ). In the VMC method, P is used to sample a set of M con!gurations in

{R, σ , τ } space that are used to estimate the integral above. A common way to generate such con-
!gurations is provided by the Metropolis algorithm, but many others are available (e.g., 93).

For strongly interacting systems, a common ansatz for a variational wave function is
|!T 〉 = F̂ |$〉. The correlation operator F̂ , modeling the short-range correlations induced by the
Hamiltonian, can generically be written as

F̂ =




∏

i< j

fc(ri j )







S
∏

i< j

(
1 + Fi j

)


 , 15.

where we have omitted three-body correlations for simplicity. In the above equation, fc(r) is a
spin/isospin-independent correlation, and

Fi j = fτ (ri j )τ i · τ j + fσ (ri j )σ i · σ j + fστ (ri j )σ i · σ jτ i · τ j + ft (ri j )Si j + ftτ (ri j )Si jτ i · τ j. 16.

Evaluating the symmetrization operator S would require a factorial number of operations. In
practice, the order of pairs for the left and right wave functions is instead sampled for each con-
!guration. The radial correlations { fi(r)} (i = τ , σ , στ , t, tτ ) include variational parameters that
are chosen in order to minimize EV.

The long-range antisymmetric part |$〉 is typically built from combinations of single-particle
orbitals, appropriate for the nuclear system of interest. For homogeneous matter, the orbitals can
be plane waves or can also include pairing correlations (94). For nuclei, the single-particle orbitals
are generally states written in the l s or j j basis that are properly combined to give the desired total
angular momentum J and isospin T of the nucleus (95). Within the GFMC method, |$〉 consists
of a set of amplitudes, each representing a particular spin/isospin con!guration of the many-body
state. For example, the spin amplitudes for three neutrons and the amplitudes after a spin/spin
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4. – Variational Monte Carlo

In VMC we start with a trial wave function, ΨT , which contains a number of vari-
ational parameters. We vary these parameters to minimize the expectation value of
H ,

ET =
〈ΨT |H |ΨT 〉

〈ΨT |ΨT 〉
≥ E0 .(18)

As indicated, the resulting ET is, by the Raleigh-Ritz variational principle, greater than
the true ground-state energy for the quantum numbers (Jπ, Jz, T , and Tz) of ΨT . A
simplified form of our trial wave functions is

|ΨT 〉 = [S
∏

i<j

(1 + Uij + ΣkUijk)]
∏

i<j

fc(rij)|Φ〉 .(19)

Here fc(r) is a central (mostly short-ranged repulsion) correlation, Uij are non-commuting
two-body correlations induced by vij , and Uijk is a simplified three-body correlation from
Vijk .

More specifically,

Uij =
∑

p=2,6

up(rij)O
p
ij ,(20)

contains τi · τj , σi · σj , σi · σj τi · τj , Sij , and Sij τi · τ operators, of which the Sij τi · τ is
most important due to the already noted strong tensor contribution from vπ. The fc(r)
and up(r) are solutions of coupled differential equations with vij as input [18].

The Φ (see below) is fully antisymmetric; hence the rest of Eq. (19) must be symmet-
ric. But the Uij do not commute; for example

[σ1 · σ2 ,σ1 · σ3] = 2i σ1 · (σ2 × σ3) .(21)

The symmetrizer S fixes this by summing over all [A(A−1)
2 ]! permutations of the ordering

in
∏

i<j . In practice this is done by using just one Monte Carlo chosen ordering per wave
function evaluation.

4
.1. The one-body part of ΨT , Φ. – The one-body part of ΨT , Φ, is a 1!ω shell-model

wave function. It determines the quantum numbers of the state being computed and is
fully antisymmetric. For 3H and 3,4He, Φ can be antisymmetrized in just spin-isospin
space, for example

|Φ(3H,MJ = 1
2 )〉 =

1√
6
(|p↑ n↑ n↓〉 − |p↑ n↓ n↑〉+ |n↓ p↑ n↑〉(22)

− |n↑ p↑ n↓〉 + |n↑ n↓ p↑〉 − |n↓ n↑ p↑〉 ) .

ground-state
energy!

→ In the VMC a probability distribution P is used to sample a set of M configurations in {R, σ , τ } 
space that are used to estimate the integral:
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fully antisymmetric

central (short-ranged 
repulsion) correlation

2- and 3-body
correlations

symmetrizer

The one-body part of the trial wave function is a 1ħω shell-model wave function. It determines the 
quantum numbers of the state being computed and is fully antisymmetric. For 3H and 3,4He,  can be 
antisymmetrized in just spin-isospin space, for example:

The radial correlations fc(r)and up(r) include variational parameters that are chosen in order to minimize 
the energy EV . 
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In VMC we start with a trial wave function, ΨT , which contains a number of vari-
ational parameters. We vary these parameters to minimize the expectation value of
H ,

ET =
〈ΨT |H |ΨT 〉
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As indicated, the resulting ET is, by the Raleigh-Ritz variational principle, greater than
the true ground-state energy for the quantum numbers (Jπ, Jz, T , and Tz) of ΨT . A
simplified form of our trial wave functions is
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two-body correlations induced by vij , and Uijk is a simplified three-body correlation from
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More specifically,
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p
ij ,(20)

contains τi · τj , σi · σj , σi · σj τi · τj , Sij , and Sij τi · τ operators, of which the Sij τi · τ is
most important due to the already noted strong tensor contribution from vπ. The fc(r)
and up(r) are solutions of coupled differential equations with vij as input [18].

The Φ (see below) is fully antisymmetric; hence the rest of Eq. (19) must be symmet-
ric. But the Uij do not commute; for example

[σ1 · σ2 ,σ1 · σ3] = 2i σ1 · (σ2 × σ3) .(21)

The symmetrizer S fixes this by summing over all [A(A−1)
2 ]! permutations of the ordering

in
∏

i<j . In practice this is done by using just one Monte Carlo chosen ordering per wave
function evaluation.

4
.1. The one-body part of ΨT , Φ. – The one-body part of ΨT , Φ, is a 1!ω shell-model

wave function. It determines the quantum numbers of the state being computed and is
fully antisymmetric. For 3H and 3,4He, Φ can be antisymmetrized in just spin-isospin
space, for example

|Φ(3H,MJ = 1
2 )〉 =

1√
6
(|p↑ n↑ n↓〉 − |p↑ n↓ n↑〉+ |n↓ p↑ n↑〉(22)

− |n↑ p↑ n↓〉 + |n↑ n↓ p↑〉 − |n↓ n↑ p↑〉 ) .
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Green’s Function Monte Carlo

The VMC trial wave functions contain admixtures of excited-state components in addition to the 
desired exact ground-state component Ψ0

Green’s Function Monte Carlo – projects Ψ0 out of ΨT by propagating in imaginary time:

- guess for the exact energy E0

14 Steven C. Pieper

5. – Green’s Function Monte Carlo – General Description

As shown above, our VMC trial wave functions are not good enough for P -shell nuclei.
This means that they contain admixtures of excited-state components in addition to the
desired exact ground-state component, Ψ0;

ΨT = Ψ0 +
∑

αiΨi .(34)

We use Green’s Function Monte Carlo to project Ψ0 out of ΨT by propagating in imag-
inary time, τ :

Ψ(τ) = exp[−(H − Ẽ0)τ ]ΨT ,(35)

= e−(E0−Ẽ0)τ × [Ψ0 +
∑

αie
−(Ei−E0)τΨi] ,(36)

lim
τ→∞

Ψ(τ) ∝ Ψ0 ,(37)

where Ẽ0 is a guess for the exact E0.
The eigenvalue E0 is calculated exactly while other expectation values are generally

calculated neglecting terms of order |Ψ0 −ΨT |2 and higher. In contrast, the error in the
variational energy, ET , is of order |Ψ0 − ΨT |2, and other expectation values calculated
with ΨT have errors of order |Ψ0 −ΨT |.

The evaluation of Ψ(τ) is made by introducing a small time step, $τ , τ = n$τ ,

Ψ(τ) =
[

e−(H−E0)$τ
]n

ΨT = GnΨT .(38)

where G is the short-time Green’s function. The Ψ(τ) is represented by a vector function
of R, and the Green’s function, Gαβ(R′,R) is a matrix function of R′ and R in spin-
isospin space, defined as

Gαβ(R
′,R) = 〈R′,α|e−(H−E0)$τ |R,β〉 .(39)

It is calculated with leading errors of order ($τ)3 as discussed below. Omitting spin-
isospin indices for brevity, Ψ(Rn, τ) is given by

Ψ(Rn, τ) =

∫

G(Rn,Rn−1) · · ·G(R1,R0)ΨT (R0) dP ,(40)

and

E(τ) =

∫

Ψ†
T (Rn) G†(Rn,Rn−1) · · ·G†(R1,R0) H ΨT (R0) dP

∫

Ψ†
T (Rn) G†(Rn,Rn−1) · · ·G†(R1,R0) ΨT (R0) dP

,(41)

where dP = dR0dR1 · · · dRn. Here we have placed the Ψ(τ) to the left side of H because
the derivatives in H may be evaluated only on ΨT ; we cannot compute gradients or
Laplacians of Ψ(τ). This 3An-dimensional integral is computed by Monte Carlo.
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desired exact ground-state component, Ψ0;

ΨT = Ψ0 +
∑

αiΨi .(34)

We use Green’s Function Monte Carlo to project Ψ0 out of ΨT by propagating in imag-
inary time, τ :

Ψ(τ) = exp[−(H − Ẽ0)τ ]ΨT ,(35)

= e−(E0−Ẽ0)τ × [Ψ0 +
∑

αie
−(Ei−E0)τΨi] ,(36)

lim
τ→∞

Ψ(τ) ∝ Ψ0 ,(37)

where Ẽ0 is a guess for the exact E0.
The eigenvalue E0 is calculated exactly while other expectation values are generally

calculated neglecting terms of order |Ψ0 −ΨT |2 and higher. In contrast, the error in the
variational energy, ET , is of order |Ψ0 − ΨT |2, and other expectation values calculated
with ΨT have errors of order |Ψ0 −ΨT |.

The evaluation of Ψ(τ) is made by introducing a small time step, $τ , τ = n$τ ,

Ψ(τ) =
[

e−(H−E0)$τ
]n

ΨT = GnΨT .(38)

where G is the short-time Green’s function. The Ψ(τ) is represented by a vector function
of R, and the Green’s function, Gαβ(R′,R) is a matrix function of R′ and R in spin-
isospin space, defined as

Gαβ(R
′,R) = 〈R′,α|e−(H−E0)$τ |R,β〉 .(39)

It is calculated with leading errors of order ($τ)3 as discussed below. Omitting spin-
isospin indices for brevity, Ψ(Rn, τ) is given by

Ψ(Rn, τ) =

∫

G(Rn,Rn−1) · · ·G(R1,R0)ΨT (R0) dP ,(40)

and

E(τ) =

∫

Ψ†
T (Rn) G†(Rn,Rn−1) · · ·G†(R1,R0) H ΨT (R0) dP

∫

Ψ†
T (Rn) G†(Rn,Rn−1) · · ·G†(R1,R0) ΨT (R0) dP

,(41)

where dP = dR0dR1 · · · dRn. Here we have placed the Ψ(τ) to the left side of H because
the derivatives in H may be evaluated only on ΨT ; we cannot compute gradients or
Laplacians of Ψ(τ). This 3An-dimensional integral is computed by Monte Carlo.

G is the short-time 
Green’s function.
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… includes spin and isospin 
degrees of freedom.

Monte Carlo evaluation of the 3An integral.
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Fig. 6. – GFMC propagation for 4He. The E(τ ) is shown as a function of imaginary time, τ .

to the computed E(τ) using three terms. The E!
1 was fixed at the first 0+ excitation

energy of 20.2 MeV of 4He, and the other two E!
i and the three αi were varied in the

fit. The fitted E!
i turn out to be very large, 340 and 1480 MeV, with small αi, 0.0018

and 0.00046, respectively. Thus the errors in the VMC ΨT correspond to small amounts
of extremely high excitation energy; GFMC is particularly efficient at filtering out such
errors.

Figure 7 shows GFMC propagation, using the AV18+IL2 Hamiltonian, of the ground,
first 3+, and 2+ states of 6Li. The propagation for the ground state (which is particle
stable with this H) and the 3+ (which is only slightly above the d+α threshold and
experimentally has a narrow width) is stable after τ = 0.2 MeV−1. However the 2+ (a
broad resonance) never becomes stable; the E(τ) are decaying to the threshold energy of
separated α and d clusters. Because the 3+ state E(τ) stops decreasing around τ=0.2,
the E(τ=0.2), shown by the star, is best GFMC estimate we can currently make of
the resonance energy. However it is now possible to make GFMC calculations using
scattering-wave boundary conditions (see Sec. 7) and this method will be applied to
states such as 6Li(2+).

6. – Results for energies of nuclear states

Figure 3 compares the GFMC energies of various nuclear states with experiment and
Fig. 8 does the same for excitation energies. In both cases the left set of bars for each
isotope shows results using just the AV18 NN potential while the middle set of bars is for
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Fig. 7. – GFMC propagation for three states of 6Li.

the full AV18+IL2 Hamiltonian. As has already been observed, AV18 alone significantly
underbinds all nuclei except the deuteron; including IL2 results in fairly good agreement
with the experimental values. The excitation spectra in Fig. 8 show that IL2 also fixes
other problems that arise when just a NN potential is used. For example, spin-orbit
splittings are usually too small without the NNN potential (note the 1

2

−
− 3

2

−
and

5
2

−
− 7

2

−
splittings in 7Li and the 1

2

−
− 3

2

−
splitting in 9Li). As is discussed in the next

subsection, even the ordering of states can be changed by the NNN potential.
The discussion of Sec. 5 implies that GFMC can be used only for the lowest state

of each set of quantum numbers but Fig. 3 shows several states with the same Jπ. The
ability of GFMC to provide such results was demonstrated in Ref. [21].

6
.1. Ordering of States in 10Be and 10B . – Figure 9 shows the beginning of the com-

puted and experimental excitation spectra of 10Be and 10B. We see that NN potentials
with no NNN predict a 1+ ground state for 10B while the Illinois-2 NNN potential fixes
this and gives the correct 3+ ground state. No-core shell model calculations show that
other NN potentials without NNN potentials also give a 1+ ground state for 10B [24],
so this is not a failure of just AV18. This incorrect ground-state prediction is another
manifestation of too-small spin-orbit splitting using just NN potentials; in 1956 D. Ku-
rath showed that the relative positions of the 3+ and 1+ levels depends on the amount
of spin-orbit strength in a shell-model calculation [25].

Examples of GFMC propagation
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interaction generates too little splitting between the two partial waves (the nonresonant 1/2−

partial wave, but not the resonant 3/2− wave, is well reproduced), at N2LO, with the addition of
the 3N interactions, agreement with both partial waves can be reproduced well even for different
parameterizations of the 3N interaction. In Reference 103, ground and some excited states of
light nuclei up to 12C were calculated in GFMC using interactions derived from !-full chiral
EFT (50) (Figure 2). Overall, the agreement with experiment is very good, with a root-mean-
square deviation from experiment of <1 MeV.
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SRC: short-range
correlation

5.2. Distributions and Short-Range Correlations
In addition to energies and radii, QMC methods can provide detailed information on the distri-
bution of nucleons in a nucleus in both coordinate and momentum space. These distributions are
connected to experimental results in several ways. For example, the one-body point-proton and
-neutron densities, de!ned as

ρ1,N (A, r) ≡ 1
4πr2

〈#0|
A∑

i=1

1 ± τz,i

2
δ(r − |ri − Rcm|)|#0〉, 27.

with a plus sign for the proton (N = p) density and a minus sign for the neutron (N = n) density,
are related via Fourier transform to the longitudinal electric form factor FL(Q) (Figure 3).Overall,
the comparisons of these electric charge form factors with experiment are very good, with the !rst
diffraction minima well reproduced.

Two-body coordinate-space distributions,

ρ2,O (A, r) ≡ 1
4πr2

〈#0|
A∑

i< j

Oi jδ(r − |ri j|)|#0〉, 28.

whereOi j is one of the operators fromEquation 3, can also be related to experimentally observable
quantities. One of the most interesting results to arise from the novel combination of EFT with
QMC methods is the relation of the so-called two-body short-range correlation (SRC) scaling

100
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Figure 3
The longitudinal electric form factors for (a) 12C and (b) 16O from auxiliary !eld diffusion Monte Carlo calculations using local chiral
effective !eld theory interactions at next-to-next-to-leading order (N2LO; red and blue bands) compared with experimental data (Exp;
green stars). (a) For 12C, only the harder cutoff R0 = 1.0 fm is shown. Results from Green’s function Monte Carlo calculations using
AV18 + IL7 are shown as black downward-facing triangles (69). (b) For 16O, both cutoffs are shown along with cluster variational
Monte Carlo calculations using the AV18 + UIX potentials (black downward-facing triangles) (104). The bands represent the combined
uncertainty coming from the Monte Carlo statistical uncertainties as well as an estimate of the theoretical uncertainty coming from the
truncation of the chiral expansion. Figure adapted from Reference 100 with permission.
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The longitudinal electric form factors for 12C. Ground- and excited-state energies for light nuclei. 

Ground-state energies and charge radii for light nuclei with 3 ≤ A ≤ 16 
using N N and 3N chiral EFT interactions. 
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Abstract
In recent years, the combination of precise quantum Monte Carlo (QMC)
methods with realistic nuclear interactions and consistent electroweak cur-
rents, in particular those constructed within effective !eld theories (EFTs),
has led to new insights in light andmedium-mass nuclei, neutronmatter, and
electroweak reactions. For example, with the same chiral interactions,QMC
calculations can reproduce binding energies and radii for light nuclei, n–α
scattering phase shifts, and the neutron matter equation of state. This com-
pelling new body of work has been made possible both by advances in QMC
methods for nuclear physics, which push the bounds of applicability to heav-
ier nuclei and to asymmetric nuclear matter, and by the development of local
chiral EFT interactions up to next-to-next-to-leading order and minimally
nonlocal interactions including " degrees of freedom. In this review, we dis-
cuss these recent developments and give an overview of the exciting results
for nuclei, neutron matter and neutron stars, and electroweak reactions.
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Ab initio No Core Shell Model
…system of A point-like nonrelativistic nucleons bound by realistic two- (NN) or two- plus three-
nucleon (NNN) interactions. All the nucleons are considered active → ‘no core’.

The Hamiltonian

… in NCSM, large but finite HO basis. An effective interaction appropriate for the basis truncation 
must be derived.

136 B.R. Barrett et al. / Progress in Particle and Nuclear Physics 69 (2013) 131–181

3.1. Hamiltonian

The starting Hamiltonian of the ab initio NCSM is

HA = Trel + V =
1
A

X

i<j

(Epi � Epj)2

2m
+

AX

i<j

VNN,ij +

AX

i<j<k

VNNN,ijk, (1)

where m is the nucleon mass, VNN,ij is the NN interaction, and VNNN,ijk is the three-nucleon interaction. In the NCSM, we
employ a large but finite HO basis.

When soft NN potentials are used, it is often feasible to employ a sufficiently large basis to reach convergence with the
Hamiltonian (1), as discussed above.

On the other hand, if realistic nuclear interactions that generate strong short-range correlations are used in Eq. (1), we
perform similarity transformation(s) of the Hamiltonian, as will be discussed the following subsections.

We note that if the Slater determinant basis is to be used, we add the Lawson projection term [110] �(HCM �
3
2 h̄⌦) to the

Hamiltonian (1) to shift the spurious CM excitations. The center-of-mass Hamiltonian can be written as HCM = TCM + UCM,
where UCM =

1
2 Am⌦2ER2, ER =

1
A

PA
i=1 Eri, and ⌦ the HO frequency. Eigenenergies of physical states are independent of the

parameter � .

3.2. Basis

In the ab initio NCSM, we use a HO basis that allows preservation of translational symmetry of the nuclear self-bound
system, even if single-nucleon coordinates are utilized. This is possible as long as the basis is truncated by a maximal total
HO energy of the A-nucleon system. A further advantage is that the HO wave functions have important transformation
properties [111] that facilitate and simplify calculations. A single-nucleon HO wave function can be written as

'nlm(Er; b) = Rnl(r; b)Ylm(r̂), (2)

with Rnl(r, b), the radial HO wave function, and b, the HO length parameter related to the HO frequency ⌦ as b =

q
h̄

m⌦
,

withm the nucleon mass.
Because the NN and NNN interactions depend on relative coordinates and/or momenta, the natural coordinates in the

nuclear problem are the relative, or Jacobi, coordinates. For the present purposes we consider just a single set of Jacobi
coordinates (a more general discussion can be found in Ref. [73]):

E⇠0 =

r
1
A

⇥
Er1 + Er2 + · · · + ErA

⇤
, (3)

E⇠1 =

r
1
2

⇥
Er1 � Er2

⇤
, (4)

E⇠2 =

r
2
3


1
2

�
Er1 + Er2

�
� Er3

�
, (5)

. . .

E⇠A�1 =

r
A � 1
A


1

A � 1
�
Er1 + Er2 + · · · + ErA�1

�
� ErA

�
. (6)

Here, E⇠0 is proportional to the center of mass of the A-nucleon system. On the other hand, E⇠⇢ is proportional to the relative
position of the (⇢ + 1)-st nucleon and the center of mass of the ⇢ nucleons.

3.2.1. Antisymmetrization of Jacobi-coordinate HO basis
As nucleons are fermions, we need to construct an antisymmetrized basis. Theway to do this, when the Jacobi-coordinate

HO basis is used, is extensively discussed in Refs. [71–73]. Here we briefly illustrate how to do this for the simplest case of
three nucleons.

One starts by introducing an HO basis that depends on the Jacobi coordinates E⇠1 and E⇠2, defined in Eqs. (5) and (6), e.g.,

|(nlsjt; N LJ)JT i. (7)

Here n, l andN , L are the HO quantum numbers corresponding to the harmonic oscillators associated with the coordinates
(and the correspondingmomenta) E⇠1 and E⇠2, respectively. The quantumnumbers s, t, j describe the spin, isospin and angular
momentum of the relative-coordinate two-nucleon channel of nucleons 1 and 2, while J is the angular momentum of the
third nucleon relative to the center of mass of nucleons 1 and 2. The J and T are the total angular momentum and the total
isospin, respectively. Note that the basis (7) is antisymmetrized with respect to the exchanges of nucleons 1 and 2, as the
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two-nucleon channel quantumnumbers are restricted by the condition (�1)l+s+t = �1. It is not, however, antisymmetrized
with respect to the exchanges of nucleons 1 $ 3 and 2 $ 3. In order to construct a completely antisymmetrized basis, one
needs to obtain eigenvectors of the antisymmetrizer

X =
1
3
(1 + T (�)

+ T (+)), (8)

where T (+) and T (�) are the cyclic and the anti-cyclic permutation operators, respectively. The antisymmetrizer X is a
projector satisfyingXX = X.Whendiagonalized in the basis (7), its eigenvectors span two eigenspaces. One, corresponding
to the eigenvalue 1, is formed by physical, completely antisymmetrized states and the other, corresponding to the eigenvalue
0, is formed by spurious states. There are about twice as many spurious states as the physical ones [112].

Due to the antisymmetry with respect to the exchanges 1 $ 2, the matrix elements in the basis (7) of the
antisymmetrizer X can be evaluated simply as hXi =

1
3 h1 � 2P2,3i, where P2,3 is the transposition operator corresponding

to the exchange of nucleons 2 and 3. Its matrix element can be evaluated in a straightforward way (see e.g., Ref. [71])

h(n1l1s1j1t1; N1L1J1)JT |P2,3|(n2l2s2j2t2; N2L2J2)JT i = �N1,N2 t̂1 t̂2

8
><

>:

1
2

1
2

t1
1
2

T t2

9
>=

>;

⇥

X

LS

L̂2Ŝ2 ĵ1 ĵ2Ĵ1Ĵ2ŝ1ŝ2(�1)L

8
><

>:

l1 s1 j1
L1

1
2

J1

L S J

9
>=

>;

8
><

>:

l2 s2 j2
L2

1
2

J2

L S J

9
>=

>;

8
><

>:

1
2

1
2

s1
1
2

S s2

9
>=

>;
hn1l1N1L1L|N2L2n2l2Li3, (9)

where Ni = 2ni + li + 2Ni + Li, i = 1, 2; ĵ =
p
2j + 1; and hn1l1N1L1L|N2L2n2l2Li3 is the general HO bracket for two

particles with mass ratio 3, as defined, e.g., in Ref. [113]. The expression (9) can be derived by examining the action of
P2,3 on the basis states (7). That operator changes the state |nl(E⇠1), N L(E⇠2), Li to |nl( E⇠ 0

1), N L( E⇠ 0
2), Li, where E⇠ 0

i, i = 1, 2
are defined as E⇠i, i = 1, 2 but with the single-nucleon indexes 2 and 3 exchanged. The primed Jacobi coordinates can be
expressed as an orthogonal transformation of the unprimed ones, see e.g., Ref. [71]. Consequently, the HO wave functions
depending on the primed Jacobi coordinates can be expressed as an orthogonal transformation of the original HO wave
functions. Elements of the transformation are the generalized HO brackets for two particles with the mass ratio d, with d
determined from the orthogonal transformation of the coordinates, see e.g., Ref. [113].

The resulting antisymmetrized states can be classified and expanded in terms of the original basis (7) as follows:

|NiJT i =

X
hnlsjt; N LJ||NiJT i|(nlsjt; N LJ)JT i, (10)

where N = 2n + l + 2N + L and we have introduced an additional quantum number i that distinguishes states with the
same set of quantum numbers N, J, T , e.g., i = 1, 2, . . . , r with r the total number of antisymmetrized states for a given
N, J, T . The symbol hnlsjt; N LJ||NiJT i is a coefficient of fractional parentage.

3.2.2. Slater determinant basis
A generalization to systems of more than three nucleons can be done as shown, e.g., in Ref. [73]. It is obvious, however,

that as we increase the number of nucleons, the antisymmetrization becomes more and more involved. Consequently, in
standard shell-model calculations one utilizes antisymmetrized wave functions constructed in a straightforward way as
Slater determinants of single-nucleon wave functions depending on single-nucleon coordinates 'i(Eri). It follows from the
transformations of HO wave functions that the use of a Slater determinant basis constructed from single-nucleon HO wave
functions, such as,

'nljmmt (Er, � , ⌧ ; b) = Rnl(r; b)(Yl(r̂)�(� ))(j)m �(⌧ )mt , (11)

results in eigenstates of a translationally invariant Hamiltonian that factorize as products of a wave function depending on
relative coordinates and a wave function depending on the CM coordinates. This is true as long as the basis truncation is
done by a chosen maximum of the sum of all HO excitations, i.e.,

PA
i=1(2ni + li)  Ntotmax. In Eq. (11), � and ⌧ are spin and

isospin coordinates of the nucleon, respectively. The physical eigenstates of a translationally invariant Hamiltonian can then
be selected as eigenstates with the CM in the 0h̄⌦ state:

hEr1 . . . ErA�1 . . . �A⌧1 . . . ⌧A|A�JMTMT iSD = hE⇠1 . . . E⇠A�1�1 . . . �A⌧1 . . . ⌧A|A�JMTMT i'000(E⇠0; b). (12)

For a general single-nucleon wave function this factorization is not possible. The use of any other single-nucleon wave
function than the HO wave function will result in the mixing of CM and internal motion.

In the ab initioNCSM calculations, we use both the Jacobi-coordinate HO basis and the single-nucleon Slater determinant
HObasis. One can choosewhichever ismore convenient for the problem to be solved. One can alsomix the two types of bases.
In general, for systems of A  4, the Jacobi coordinate basis is more efficient, as one can perform the antisymmetrization
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done by a chosen maximum of the sum of all HO excitations, i.e.,

PA
i=1(2ni + li)  Ntotmax. In Eq. (11), � and ⌧ are spin and

isospin coordinates of the nucleon, respectively. The physical eigenstates of a translationally invariant Hamiltonian can then
be selected as eigenstates with the CM in the 0h̄⌦ state:

hEr1 . . . ErA�1 . . . �A⌧1 . . . ⌧A|A�JMTMT iSD = hE⇠1 . . . E⇠A�1�1 . . . �A⌧1 . . . ⌧A|A�JMTMT i'000(E⇠0; b). (12)

For a general single-nucleon wave function this factorization is not possible. The use of any other single-nucleon wave
function than the HO wave function will result in the mixing of CM and internal motion.

In the ab initioNCSM calculations, we use both the Jacobi-coordinate HO basis and the single-nucleon Slater determinant
HObasis. One can choosewhichever ismore convenient for the problem to be solved. One can alsomix the two types of bases.
In general, for systems of A  4, the Jacobi coordinate basis is more efficient, as one can perform the antisymmetrization
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easily. The CM degrees of freedom can be explicitly removed and a coupled J⇡T basis can be utilizedwithmatrix dimensions
of the order of thousands. For systems with A > 4, it is, in general, more efficient to use the Slater determinant HO basis. In
fact, we use the so-called m-scheme basis with conserved quantum numbers M =

PA
i=1 mi, parity ⇡ and MT =

PA
i=1 mti.

The antisymmetrization is trivial, but the dimensions can be huge, as the CM degrees of freedom are present, and no JT
coupling is considered. The advantage is the possibility to utilize the powerful second-quantization technique, shell-model
codes, transition density codes and so on.

As mentioned above, the model space truncation is always done using the condition
PA

i=1(2ni + li)  Ntotmax. Often,
instead of Ntotmax, we introduce the parameter Nmax that measures the maximal allowed HO excitation energy above the
unperturbed ground state. For A = 3, 4 systems Nmax = Ntotmax. For the p-shell nuclei they differ, e.g., for 6Li, Nmax =

Ntotmax � 2, for 12C, Nmax = Ntotmax � 8, etc.

3.3. Effective interaction

In the ab initio NCSM calculations we use a truncated HO basis, as discussed in previous sections. The inter-nucleon
interactions act, however, in the full space. As long as one uses soft potentials, such as the Vlowk, SRG NN , UCOM or JISP,
convergent NCSM results can be obtained. Such NCSM calculations are variational with the HO frequency and the basis
truncation parameter Nmax, acting as variational parameters.

However, the situation is different when standard NN potentials that generate strong short-range correlations, such as
AV18, CD-Bonn 2000, and INOY, are used, or when a not-large-enough Nmax truncation can be reached with the chiral N3LO
NN potential (in particular, when it is used in combination with the chiral NNN interaction). To facilitate the convergence of
the calculations, we adopt a renormalization procedure specified by a similarity transformation that softens the interactions
and generates effective operators for all observables, while preserving all experimental quantities in the low-energy domain.
The derived ‘‘effective’’ interactions still act among all A nucleons and preserve all the symmetries of the initial or ‘‘bare’’
NN+NNN interactions. There are two such renormalization procedures thatwe currently employ, one called the Lee–Suzuki
(LS) or Okubo–Lee–Suzuki (OLS) scheme [61,62,66] and the other called the Similarity Renormalization Group (SRG) [102].

3.3.1. Okubo–Lee–Suzuki (OLS) similarity transformation method
Let us consider an arbitrary Hamiltonian H with the eigensystem Ek, |ki, i.e.,

H|ki = Ek|ki. (13)

Let us further divide the full space into the model space defined by a projector P and the complementary space defined by
a projector Q , P + Q = 1. A similarity transformation of the Hamiltonian e�!He! can be introduced with a transformation
operator ! satisfying the condition ! = Q!P . The transformation operator is then determined from the requirement of
decoupling of the Q-space and the model space as follows

Qe�!He!P = 0. (14)

Using a Feshbach construction, one can show that the particular choice of the decoupling condition (14) ensures that the
effective Hamiltonian is energy independent [114]. If we denote the model space basis states as |↵Pi, and those which
belong to the Q-space, as |↵Q i, then the relation Qe�!He!P|ki = 0, following from Eq. (14), will be satisfied for a particular
eigenvector |ki of the Hamiltonian (13), if its Q -space components can be expressed as a combination of its P-space
components with the help of the transformation operator !, i.e.,

h↵Q |ki =

X

↵P

h↵Q |!|↵Pih↵P |ki. (15)

If the dimension of the model space is dP , we may choose a set K of dP eigenvectors, for which the relation (15) will be
satisfied. Under the condition that the dP ⇥ dP matrix defined by the matrix elements h↵P |ki for |ki 2 K is invertible, the
operator ! can be determined from (15) as

h↵Q |!|↵Pi =

X

k2K

h↵Q |kihk̃|↵Pi, (16)

where we denote by tilde the inverted matrix of h↵P |ki, e.g.,
P

↵P
hk̃|↵Pih↵P |k0i = �k,k0 , for k, k0 2 K .

The Hermitian effective Hamiltonian defined on the model space P is then given by [63,64]

H̄eff =
⇥
P(1 + !Ñ!)P

⇤1/2 PH(P + Q!P)
⇥
P(1 + !Ñ!)P

⇤�1/2
. (17)

By making use of the properties of the operator !, the effective Hamiltonian H̄eff can be rewritten in an explicitly Hermitian
form as

H̄eff =
⇥
P(1 + !Ñ!)P

⇤�1/2
(P + P!ÑQ )H(Q!P + P)

⇥
P(1 + !Ñ!)P

⇤�1/2
. (18)

The full space is divided into the model space defined by a projector P and the complementary space 
defined by a projector Q , P + Q = 1. 
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Fig. 1. Schematic illustration on howOkubo–Lee–Suzuki (OLS) similarity transformation yields an H̄eff in a finitemodel space P decoupled from the infinite
complementary Q space.

With the help of the solution for ! (16) we obtain a simple expression for the matrix elements of the effective Hamiltonian

h↵P |H̄eff|↵P 0 i =

X

↵P 00

X

↵P 000

X

kk0k002K

h↵P |k̃00
ihk̃00

|↵P 00 ih↵P 00 |k̃iEkhk̃|↵P 000 ih↵P 000 |k̃0
ihk̃0

|↵P 0 i (19)

with all the summations over theQ-space basis states removed. The effectiveHamiltonian (19) reproduces the eigenenergies
Ek, k 2 K in the model space.

There are a number of formal mathematical issues concerning effective operator approaches, in general. Some of these
issues for the OLS approach have been identified and investigated in Ref. [115]. For example, onemay questionwhich subset
of the eigenvalues of the full space are obtained in the OLS approach and under what conditions are the solutions well-
behaved.

It has been shown [65,66] that the Hermitian effective Hamiltonian (18) can be obtained directly by a unitary
transformation of the original Hamiltonian:

H̄eff = Pe�SHeSP, (20)

with an anti-Hermitian operator S = arctanh(! � !Ñ). The transformed Hamiltonian then satisfies decoupling conditions
Qe�SHeSP = Pe�SHeSQ = 0, as shown schematically in Fig. 1.

We can see from Eq. (19) that in order to construct the effective Hamiltonian we need to know a subset of exact
eigenvalues and model space projections of a subset of exact eigenvectors. This may suggest that the method is rather
impractical. Also, it follows from Eq. (19) that the effective Hamiltonian contains many-body terms, in fact for an A-nucleon
system, all terms up to A-bodywill, in general, appear in the effectiveHamiltonian, even if the original Hamiltonian consisted
of just two-body or two- plus three-body terms.

In the ab initio NCSM we use the above OLS effective interaction theory as follows. First, we modify the Hamiltonian (1)
by adding to it the center-of-mass (CM) HO Hamiltonian HCM = TCM + UCM, where UCM =

1
2 Am⌦2ER2, ER =

1
A

PA
i=1 Eri. The

effect of the HO CM Hamiltonian will later be subtracted out in the final many-body calculation. Due to the translational
invariance of the Hamiltonian (1), the HO CMHamiltonian has in fact no effect on the intrinsic properties of the system. The
modified Hamiltonian can be cast into the form

H⌦
A = HA + HCM =

AX

i=1

hi +

AX

i<j

V⌦,A
ij +

AX

i<j<k

VNNN,ijk

=

AX

i=1


Ep2i
2m

+
1
2
m⌦2

Er2i

�
+

AX

i<j


VNN,ij �

m⌦2

2A
(Eri � Erj)2

�
+

AX

i<j<k

VNNN,ijk. (21)

3.3.2. Two-body OLS effective interaction
Since the two-body part dominates the A-nucleon Hamiltonian (21), it is reasonable to expect that a two-body effective

interaction that takes into account full space two-nucleon correlations would be the most important part of the exact
effective interaction. If the NNN interaction is taken into account, a three-body effective interaction that takes into account
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with all the summations over theQ-space basis states removed. The effectiveHamiltonian (19) reproduces the eigenenergies
Ek, k 2 K in the model space.

There are a number of formal mathematical issues concerning effective operator approaches, in general. Some of these
issues for the OLS approach have been identified and investigated in Ref. [115]. For example, onemay questionwhich subset
of the eigenvalues of the full space are obtained in the OLS approach and under what conditions are the solutions well-
behaved.

It has been shown [65,66] that the Hermitian effective Hamiltonian (18) can be obtained directly by a unitary
transformation of the original Hamiltonian:

H̄eff = Pe�SHeSP, (20)

with an anti-Hermitian operator S = arctanh(! � !Ñ). The transformed Hamiltonian then satisfies decoupling conditions
Qe�SHeSP = Pe�SHeSQ = 0, as shown schematically in Fig. 1.

We can see from Eq. (19) that in order to construct the effective Hamiltonian we need to know a subset of exact
eigenvalues and model space projections of a subset of exact eigenvectors. This may suggest that the method is rather
impractical. Also, it follows from Eq. (19) that the effective Hamiltonian contains many-body terms, in fact for an A-nucleon
system, all terms up to A-bodywill, in general, appear in the effectiveHamiltonian, even if the original Hamiltonian consisted
of just two-body or two- plus three-body terms.

In the ab initio NCSM we use the above OLS effective interaction theory as follows. First, we modify the Hamiltonian (1)
by adding to it the center-of-mass (CM) HO Hamiltonian HCM = TCM + UCM, where UCM =

1
2 Am⌦2ER2, ER =

1
A

PA
i=1 Eri. The

effect of the HO CM Hamiltonian will later be subtracted out in the final many-body calculation. Due to the translational
invariance of the Hamiltonian (1), the HO CMHamiltonian has in fact no effect on the intrinsic properties of the system. The
modified Hamiltonian can be cast into the form

H⌦
A = HA + HCM =

AX

i=1

hi +

AX

i<j

V⌦,A
ij +

AX

i<j<k

VNNN,ijk

=

AX

i=1


Ep2i
2m

+
1
2
m⌦2

Er2i

�
+

AX

i<j


VNN,ij �

m⌦2

2A
(Eri � Erj)2

�
+

AX

i<j<k

VNNN,ijk. (21)

3.3.2. Two-body OLS effective interaction
Since the two-body part dominates the A-nucleon Hamiltonian (21), it is reasonable to expect that a two-body effective

interaction that takes into account full space two-nucleon correlations would be the most important part of the exact
effective interaction. If the NNN interaction is taken into account, a three-body effective interaction that takes into account

The hermitian effective Hamiltonian can be obtained directly by a unitary transformation of the 
original Hamiltonian:
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With the help of the solution for ! (16) we obtain a simple expression for the matrix elements of the effective Hamiltonian

h↵P |H̄eff|↵P 0 i =
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|↵P 0 i (19)

with all the summations over theQ-space basis states removed. The effectiveHamiltonian (19) reproduces the eigenenergies
Ek, k 2 K in the model space.

There are a number of formal mathematical issues concerning effective operator approaches, in general. Some of these
issues for the OLS approach have been identified and investigated in Ref. [115]. For example, onemay questionwhich subset
of the eigenvalues of the full space are obtained in the OLS approach and under what conditions are the solutions well-
behaved.

It has been shown [65,66] that the Hermitian effective Hamiltonian (18) can be obtained directly by a unitary
transformation of the original Hamiltonian:

H̄eff = Pe�SHeSP, (20)

with an anti-Hermitian operator S = arctanh(! � !Ñ). The transformed Hamiltonian then satisfies decoupling conditions
Qe�SHeSP = Pe�SHeSQ = 0, as shown schematically in Fig. 1.

We can see from Eq. (19) that in order to construct the effective Hamiltonian we need to know a subset of exact
eigenvalues and model space projections of a subset of exact eigenvectors. This may suggest that the method is rather
impractical. Also, it follows from Eq. (19) that the effective Hamiltonian contains many-body terms, in fact for an A-nucleon
system, all terms up to A-bodywill, in general, appear in the effectiveHamiltonian, even if the original Hamiltonian consisted
of just two-body or two- plus three-body terms.

In the ab initio NCSM we use the above OLS effective interaction theory as follows. First, we modify the Hamiltonian (1)
by adding to it the center-of-mass (CM) HO Hamiltonian HCM = TCM + UCM, where UCM =

1
2 Am⌦2ER2, ER =

1
A

PA
i=1 Eri. The

effect of the HO CM Hamiltonian will later be subtracted out in the final many-body calculation. Due to the translational
invariance of the Hamiltonian (1), the HO CMHamiltonian has in fact no effect on the intrinsic properties of the system. The
modified Hamiltonian can be cast into the form

H⌦
A = HA + HCM =

AX

i=1

hi +

AX

i<j

V⌦,A
ij +

AX

i<j<k

VNNN,ijk

=

AX

i=1


Ep2i
2m

+
1
2
m⌦2

Er2i

�
+

AX

i<j


VNN,ij �

m⌦2

2A
(Eri � Erj)2

�
+

AX

i<j<k

VNNN,ijk. (21)

3.3.2. Two-body OLS effective interaction
Since the two-body part dominates the A-nucleon Hamiltonian (21), it is reasonable to expect that a two-body effective

interaction that takes into account full space two-nucleon correlations would be the most important part of the exact
effective interaction. If the NNN interaction is taken into account, a three-body effective interaction that takes into account



The effective Hamiltonian contains many-body terms. For an A-nucleon system all terms up to A-body 
will in general appear in the effective Hamiltonian even if the original Hamiltonian consists of just 
two-body or two- plus three-body terms.

The two-body or three-body effective interaction is by construction exact for the 
two- or three-nucleon system. It is an approximation of the exact A-nucleon 
effective interaction.

HO 3-body effective interaction 
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interaction 

3-body effective interaction 
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… plus HCM must be subtracted.

The unitary transformation performed on the Hamiltonian should also be applied to other operators 
that are used to calculate observables.
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full space three-nucleon correlationswould be a good approximation to the exact A-body effective interaction.We construct
the two-body or three-body effective interaction by application of the above described Okubo–Lee–Suzuki procedure to a
two-nucleon or three-nucleon system. The resulting effective interaction is then exact for the two- or three-nucleon system.
It is an approximation of the exact A-nucleon effective interaction.

Using the notation of Eq. (21), the two-nucleon effective interaction is obtained as

V2eff,12 = P2[e�S12(h1 + h2 + V⌦,A
12 )eS12 � (h1 + h2)]P2, (22)

with S12 = arctanh(!12 � !
Ñ
12) and P2 is a two-nucleon model space projector. The two-nucleon model space is defined by

a truncation N12max corresponding to the A-nucleon Nmax. For example, for A = 3, 4, N12max = Nmax, for p-shell nuclei with
A > 5N12max = Nmax + 2. The operator !12 is obtained with the help of Eq. (16) from exact solutions of the Hamiltonian
h1 + h2 + V⌦,A

12 , which are straightforward to find. In practice, we actually do not need to calculate !12, rather we apply
Eq. (19) with the two-nucleon solutions to directly calculate P2e�S12(h1 + h2 + V⌦,A

12 )eS12P2. To be explicit, the two-nucleon
calculation is done with

H⌦
2 = H02 + V⌦,A

12 =
Ep2

2m
+

1
2
m⌦2

Er2 + VNN(
p
2Er) �

m⌦2

A
Er2, (23)

where Er =

q
1
2 (Er1 �Er2) and Ep =

q
1
2 (Ep1 � Ep2) and where H02 differs from h1 + h2 by the omission of the center-of-mass HO

term of nucleons 1 and 2. Since V⌦,A
12 acts on relative coordinate, the S12 is independent of the two-nucleon center of mass

and the two-nucleon center-of-mass Hamiltonian cancels out in Eq. (22). We can see that for A > 2 the solutions of (23) are
bound. The relative-coordinate two-nucleon HO states used in the calculation are characterized by quantumnumbers |nlsjti
with the radial and orbital HO quantum numbers corresponding to coordinate Er and momentum Ep. Typically, we solve the
two-nucleon Hamiltonian (23) for all two-nucleon channels up to j = 8. For the channels with higher j only the kinetic-
energy term is used in the many-nucleon calculation. The model space P2 is defined by the maximal number of allowed HO
excitations N12max from the condition 2n + l  N12max. In order to construct the operator ! (16) we need to select the set
of eigenvectors K . We select the lowest states obtained in each channel. It turns out that these states also have the largest
overlap with the P2 model space. Their number is given by the number of basis states satisfying 2n + l  N12max.

The two-body effective Hamiltonian used in the A-nucleon calculation is then

H⌦
A,eff =

AX

i=1

hi +

AX

i<j

V2eff,ij. (24)

At this point we also subtract the HCM.

3.3.3. Three-body OLS effective interaction
An improvement over the two-body effective interaction approximation is the use of the three-body effective interaction

that takes into account the full space three-nucleon correlations. If the NNN interaction is included, the three-body effective
interaction approximation is rather essential for A > 3 systems. First, let us consider the case with no NNN interaction. The
three-body effective interaction can be calculated as

VNN
3eff,123 = P3

h
e�SNN123(h1 + h2 + h3 + V⌦,A

12 + V⌦,A
13 + V⌦,A

23 )eS
NN
123 � (h1 + h2 + h3)

i
P3. (25)

Here, SNN123 = arctanh(!123 � !
Ñ
123) and P3 is a three-nucleon model space projector. The P3 space contains all three-nucleon

states up to the highest possible three-nucleon excitation, which can be found in the P space of the A-nucleon system. For
example, for A = 6 andNmax = 6 (6h̄⌦) spacewe have P3 defined byN123max = 8. Similarly, for the p-shell nuclei with A � 7
and Nmax = 6 (6h̄⌦) space we have N123max = 9. The operator!123 is obtained with the help of Eq. (16) from exact solutions
of the Hamiltonian h1 + h2 + h3 + V⌦,A

12 + V⌦,A
13 + V⌦,A

23 , which are found using the antisymmetrized three-nucleon Jacobi
coordinate HO basis. In practice, we again do not need to calculate !123, rather we apply Eq. (19) with the three-nucleon
solutions. The three-body effective interaction is then used in A-nucleon calculations using the effective Hamiltonian

H⌦
A,eff =

AX

i=1

hi +
1

A � 2

AX

i<j<k

VNN
3eff,ijk, (26)

where the 1
A�2 factor takes care of over-counting the contribution from the two-nucleon interaction.

If the NNN interaction is included, we need to calculate in addition to (25) the following effective interaction

VNN+NNN
3eff,123 = P3

h
e�SNN+NNN

123 (h1 + h2 + h3 + V⌦,A
12 + V⌦,A

13 + V⌦,A
23 + VNNN,123)eS

NN+NNN
123 � (h1 + h2 + h3)

i
P3. (27)

The two-body effective Hamiltonian used in the A-nucleon system:

The three-body effective Hamiltonian: 
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Fig. 2. Illustration of how the SRG procedure [118–120,106] weakens the strong off-diagonal couplings of the 1S0 chiral N3LO NN potential [27,28] in
momentum space as the flow proceeds to smaller values of � (left to right panels).

This three-body effective interaction is obtained using full space solutions of the Hamiltonian h1 + h2 + h3 +V⌦,A
12 +V⌦,A

13 +

V⌦,A
23 + VNNN,123. We then define the three-body effective-interaction contribution from the NNN interaction as

VNNN
3eff,123 ⌘ VNN+NNN

3eff,123 � VNN
3eff,123. (28)

The three-body effective Hamiltonian used in the A-nucleon calculation is then

H⌦
A,eff =

AX

i=1

hi +
1

A � 2

AX

i<j<k

VNN
3eff,ijk +

AX

i<j<k

VNNN
3eff,ijk. (29)

As in the case of the two-body effective Hamiltonian (24), we subtract the HCM.
It should be noted that all the effective interaction calculations are performed in the Jacobi coordinate HO basis. As

discussed above, the two-body effective interaction is performed in the |nlsjti basis and the three-body effective interaction
in the |NiJT i basis (10). In order to perform the A-nucleon calculation in the Slater determinant HO basis, as is typically done
for A > 4, the effective interaction needs to be transformed to the single-nucleon HO basis. This is done with help of the HO
wave function transformations. The details for the three-body case, in particular, are given in Refs. [116,117].

It should also be noted that one may think of separating the two-body and the three-body parts of the VNN
3eff (25). This has

not been done in theNCSMcalculationswith theOLS effective interaction, as the current implementation (26) proved robust,
and attempts of the separationwere plagued by spuriousmodel-space effects. However, such a separation is straightforward
and of critical importance for successful applications of the SRG effective interactions, as discussed below.

3.4. SRG effective interaction

The SRG offers an approach to consistently evolve two-, three- (and even higher-) body forces to soften the
short-range repulsion and tensor components of available initial interactions, so convergence of nuclear structure
calculations is greatly accelerated. Irrespective of the chosen initial Hamiltonian, the evolution produces a variational
Hamiltonian and enables smooth extrapolation of results, in contrast to Okubo–Lee–Suzuki type transformations, which
produce results that are model-space dependent (in both Nmax and A). While the SRG induces many-body forces as a
product of renormalization, these terms typically come in a hierarchy of decreasing strength, if a hierarchy is initially
present.

The SRG is a continuous unitary transformation of the free-space Hamiltonian H (1) (H ⌘ H�=1),

H� = U�H�=1UÑ
�, (30)

labeled by a momentum parameter � that runs from 1 toward zero, which keeps track of the sequence of Hamiltonians
(s = 1/�4 has been used elsewhere [102,118,120]). These transformations are implemented as a flow equation in � (in units
where h̄2 /M = 1),

dH�

d�
= �

4
�5 [[Trel,H�],H�], (31)

whose form guarantees that the H�’s are unitarily equivalent [102,119,121,122].
The appearance of the nucleon relative kinetic energy Trel in Eq. (31) leads to high- and low-momentum parts of H�

being decoupled, which means softer and more convergent potentials [123]. This is evident in a partial-wave momentum
basis, wherematrix elements hk|H�|k0i connecting stateswith (kinetic) energies differing bymore than �2 are suppressed by
e�(k2�k02)2/�4 factors and, therefore, the states decouple as � decreases. (Decoupling also results from replacing Trel in Eq. (31)
with other generators [102,122,124,125].) The decoupling between the high-momentum and low-momentum parts of the
NN interaction is illustrated in Fig. 2.
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3H ground-state energy 
dependence on the size 
of the basis. The HO 
frequency: ħΩ=28 MeV. 

The calculation without the NNN interaction converges to the ground-state energy -7.85 MeV. With 
the NNN interaction included, the result is -8.47 MeV, close to experiment (-8.48 MeV).

‘bare’ EFT interactions

effective interactions
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Fig. 3. 3H (left) and 4He (right) g.s. energy dependence on the size of the basis. The HO frequencies of h̄⌦ = 28 MeV (3H) and 28 or 36 MeV (4He) were
employed. Results with (thick lines) and without (thin lines) the NNN interaction are shown for the EFT interactions [27,28]. The solid lines correspond to
calculations with two-body (3H) or three-body (4He) effective interactions, and the dashed lines to calculations with the bare interactions.

Fig. 4. Convergence of the 4He g.s. energy with the size of the HO basis. Calculations with the bare (dashed line) and the SRG evolved (solid line)
�EFTNN + NNN interactions are compared. The SRG evolution parameter � = 2 fm�1 was used (see Fig. 2). The dotted line denotes the extrapolated
g.s. energy (�28.5 MeV), which is close to the experiment (�28.3 MeV). Further details are given in Ref. [128].

We note that in the case of no NNN interaction, we may use just the two-body effective interaction (two-body cluster
approximation), which is much simpler. The convergence is slower, however, see discussion in Ref. [132]. We also note
that 4He properties with the chiral EFT NN interaction that we employ here were calculated using the two-body cluster
approximation in Ref. [133], and the present results are in agreement with results found there. Our 4He ground-state
energy results are �25.39(1) MeV in the NN case and �28.34(2) MeV in the NN + NNN case. The experimental value is
�28.296 MeV. We note that the present ab initio NCSM 3H and 4He results, obtained with the chiral EFT NN interaction,
are in a perfect agreement with results obtained using the variational calculations in the hyperspherical harmonics
basis as well as with the Faddeev–Yakubovsky calculations published in Ref. [134]. A satisfying feature of the present
NCSM calculation is the fact that the rate of convergence is not affected in any significant way by inclusion of the NNN
interaction.

Fig. 4 shows such results for 4He, now with SRG-evolved interactions, as a function of the P-space size given in terms of
Nmaxh̄⌦ , the maximum HO energy of configurations included above the unperturbed g.s. configuration. The figure clearly
shows the accelerated rate of convergence for the softer SRG interactions over the bare NN (or NN +NNN) interaction. More
details are given in Ref. [128].

As an example of convergence of ab initio NCSM calculations for p-shell nuclei, we present 6Li results obtained using
the INOY and the chiral EFT NN potential. The dependence of the NCSM absolute and excitation energies on the basis size



States dominated by 0p-shell configurations for 10B, 11B, 12C, and 13C calculated at Nmax = 6,  ħΩ= 15 
MeV. The excitation energy scales are in MeV.

No Core Shell Model Applications



applied in the context of the NCSM/RGM, which is able to
address non-local interactions [49, 50, 116]. Nevertheless,
using the GFMC framework, a recent work of Lynn et al [41]
employed the local part of the chiral N2LO two-nucleon
interaction to describe this reaction system.

Figure 13 shows the first application of the NCSMC to
this reaction system. The calculated phase shifts are obtained
with the SRG-evolved N3LO two-nucleon chiral interaction
supplemented by the induced 3N forces (blue dashed lines)
and the complete NN+3N chiral interaction (continuous red
lines). At the present HO frequency (� 8 � 20 MeV) and
SRG-resolution scale (- � 2 fm−1), the former and the latter
are representations of the initial chiral NN and NN+3N
interaction, respectively, as the SRG unitarity is broken only
mildly in this case (see figure 6 as well as figures 6 and 7 in
[116] and the related discussion). The observed disagreement
between the two-nucleon force model results and experiment,
particularly regarding the relative position of the P3

2
to P1

2

centroids, corroborates the conclusions of Nollett et al.
Accordingly, the inclusion of the chiral 3N force is necessary
to the reproduction of the observed splitting between the P-
waves and given that the spin–orbit interaction is responsible
of the fine tuning of the relative position of the

�
3
2

and
�

1
2

resonances, we conclude that the chiral 3N force brings an
important part of the nuclear spin physics. Here we stress that
it would not have been possible to draw such conclusions
working within the many-body model space of the NCSM/
RGM, where it is difficult to account for the short-range

many-body correlations. This is exemplified by figures 7 and
8 of section 2.8.

Therefore, the advent of the NCSMC treating on the
same footing bound and resonant states permits us to reach
convergence with respect to the parameters of the HO model
space. A typical example of the precision that can be attained
is displayed in figure 14. There, the 1H(α, p)4He angular
differential cross-section calculated with the NCSMC is
compared to data of [128–133] for a set of proton recoil
angles (j). The range in energy of the impinging α particle
covers the

�
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2

and
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1
2

resonances where the cross section
deviates the most from the Rutherford limit (limit of struc-
tureless charged particle scattering). Numerous experiments
have been performed in this region to understand the nuclear
enhancement and thus obtain precise cross-section needed for
ion-beam analysis. For instance, the cross section shown here
are essential for the determination of the concentration and
depth of 4He impurity in superconductors used in fusion
energy research. Here, we benefit from the wealth of data and
use it to probe the precision of the (SRG-evolved NN+3N)
nuclear force model. For almost all angles, the theoretical
results are within the error bars of data, and only at small
angles we see disagreements that could be related to the
remaining inaccuracies of the interaction to reproduce the
centroid positions. Despite this, the present NCSMC form-
alism and the state-of-the-art chiral interaction has reached the
stage where it can be used as a predictive tool in particular in
light nuclei where the convergence and the SRG sensitivity is
more-or-less under control [134]. Furthermore, it is essential
to stress that a consistent framework for bound and resonant
states is constitutive to the agreement of the cross section with
data. For instance, figure 7 in section 2.8 sheds the light on
the effects of the coupling to the NCSM 5Li eigenstates.

Figure 13. Computed 4He(n, n)4He phase shifts obtained with the
NCSMC using the SRG-evolved N3LO NN interaction augmented
with the three-nucleon SRG-induced (NN, blue dashed lines) and
total NN+3N (continuous red lines) Hamiltonian. The R-matrix
analysis of data from [126] is shown as guidance (purple crosses).
The results are computed in a HO model of �N 13max with a HO
frequency of � 8 � 20 MeV, all the influential eigenstates of the
compound nuclei (5He) and only the g.s. of the target nuclei are
included. The SRG-resolution scale is - � 2 fm−1, which, for this
system, approximates well a unitary representation of the initial
interaction [116].

Figure 14. The computed 1H(α, p)4He angular differential cross-
section at proton recoil angle of K � n n n4 , 16 , 20p and 30° as a
function of the proton incident energy is plotted versus the data
(symbols) of [128–133]. Parameters of the computed angular
distributions are identical to those of figure 13. (Figure adapted and
reproduced with permission from [134]. Copyright American
Physical Society 2014.)
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In figure 15 the 4He(n, n)4He angular differential cross
section and a polarization observable (Ay) of [135–137] are
compared to NCSMC results using the chiral N3LO NN and
its 3N induced interaction (dashed blue lines) and the full
NN+3N (continuous red lines), which includes the chiral
N2LO 3N interaction.

In panel (a), the agreement between the NCSMC results
and experiment is nearly within the error bars of data and the
effect of the initial 3N force is almost indistinguishable. In
this respect, panels (b) and (c) give more insight as the Ay

analyzing power is a more sensitive probe of the spin–orbit
force. In particular we can see that the differences between the
chiral two- and two-plus-3N force models are mostly con-
centrated in the spin physics, which is better reproduced in the
latter model. The remaining disagreement with experiment, in
particular in panel (b), hints that there is still room for
improvement of our understanding of the nuclear interaction.
Additionally, we can see that as the incident neutron energy
increased from panels (b) to (c), the disagreement between the
NCSMC NN+3N and experiment widens. This is related to
the missing distortion effects induced by the closed but
neighboring 3H(d, n)4He channel.

This is more readily visible in figure 16 where the total
cross-section of the 5He continuum is plotted up to 22MeV of
excitation energy. The calculated cross-sections correspond to
the phase shifts and angular distributions shown in figures 13
and 15 with the same color coding. The calculations are
compared to data (purple crosses) and R-matrix fit (black line)
from the ENDF library. Once again, the difference between
the two nuclear force models is apparent around the positions
of the two low-lying resonances while, at higher energies, the
cross sections are indistinguishable and differences can only
probe using more sensitive observables such as the Ay shown
in figure 15. We can see here that the enhancement of the
cross-section due to �d H3 fusion is already present in the
NCSMC calculation however at the wrong energy due to the

Figure 15. Comparison between angular differential cross-section
and polarization observable for 4He(n, n)4He computed with SRG-
evolved N3LO NN interaction augmented with the three-nucleon
SRG-induced (NN, blue dashed lines) and total NN+3N (red lines)
Hamiltonian, and data (purple crosses) from [135–137]. From top to
bottom, respectively, the angular differential cross-section at neutron
incident energy of 17.6 MeV, the polarization observable at 11 and
15 MeV are shown. Parameters of the computed cross section are
identical to those of figure 13.

Figure 16. Comparison between the computed 4He(n, n)4He cross-
section obtained with the NCSMC using the SRG-evolved N3LO
NN interaction augmented with the three-nucleon SRG-induced
(NN, blue dashed lines), the total NN+3N (continuous red lines)
Hamiltonian, R-matrix analysis from ENDF (black line) and data
(purple crosses). Parameters of the computed cross section are
identical to those of figure 13.

24

Phys. Scr. 91 (2016) 053002 Invited Comment

Nuclei → bound states, unbound resonances, and scattering states. 

NCSM applications to nuclear reactions 

4He(n, n)4He phase shifts 4He(n, n)4He cross section 

In figure 15 the 4He(n, n)4He angular differential cross
section and a polarization observable (Ay) of [135–137] are
compared to NCSMC results using the chiral N3LO NN and
its 3N induced interaction (dashed blue lines) and the full
NN+3N (continuous red lines), which includes the chiral
N2LO 3N interaction.

In panel (a), the agreement between the NCSMC results
and experiment is nearly within the error bars of data and the
effect of the initial 3N force is almost indistinguishable. In
this respect, panels (b) and (c) give more insight as the Ay

analyzing power is a more sensitive probe of the spin–orbit
force. In particular we can see that the differences between the
chiral two- and two-plus-3N force models are mostly con-
centrated in the spin physics, which is better reproduced in the
latter model. The remaining disagreement with experiment, in
particular in panel (b), hints that there is still room for
improvement of our understanding of the nuclear interaction.
Additionally, we can see that as the incident neutron energy
increased from panels (b) to (c), the disagreement between the
NCSMC NN+3N and experiment widens. This is related to
the missing distortion effects induced by the closed but
neighboring 3H(d, n)4He channel.

This is more readily visible in figure 16 where the total
cross-section of the 5He continuum is plotted up to 22MeV of
excitation energy. The calculated cross-sections correspond to
the phase shifts and angular distributions shown in figures 13
and 15 with the same color coding. The calculations are
compared to data (purple crosses) and R-matrix fit (black line)
from the ENDF library. Once again, the difference between
the two nuclear force models is apparent around the positions
of the two low-lying resonances while, at higher energies, the
cross sections are indistinguishable and differences can only
probe using more sensitive observables such as the Ay shown
in figure 15. We can see here that the enhancement of the
cross-section due to �d H3 fusion is already present in the
NCSMC calculation however at the wrong energy due to the

Figure 15. Comparison between angular differential cross-section
and polarization observable for 4He(n, n)4He computed with SRG-
evolved N3LO NN interaction augmented with the three-nucleon
SRG-induced (NN, blue dashed lines) and total NN+3N (red lines)
Hamiltonian, and data (purple crosses) from [135–137]. From top to
bottom, respectively, the angular differential cross-section at neutron
incident energy of 17.6 MeV, the polarization observable at 11 and
15 MeV are shown. Parameters of the computed cross section are
identical to those of figure 13.

Figure 16. Comparison between the computed 4He(n, n)4He cross-
section obtained with the NCSMC using the SRG-evolved N3LO
NN interaction augmented with the three-nucleon SRG-induced
(NN, blue dashed lines), the total NN+3N (continuous red lines)
Hamiltonian, R-matrix analysis from ENDF (black line) and data
(purple crosses). Parameters of the computed cross section are
identical to those of figure 13.
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