Quantum Kagome Antiferromagnets : Herbertsmithite vs Vesignieite

F. Bert¹, J.A. Quilliam¹, P. Mendels¹, E. Kermarrec¹, M. Jeong¹

¹Laboratoire de Physique des Solides, Université Paris-Sud, UMR CNRS 8502, 91405 Orsay, France

The frustration of antiferromagnetic interactions on the loosely connected kagome lattice associated to the enhancement of quantum fluctuations for S=1/2 spins was acknowledged long ago as a key combination to stabilize novel ground states of magnetic matter of the spin-liquid type [1]. Only in 2005, a model compound, the Herbersmithite ZnCu₃(OH)₆Cl₂, could be synthesized and has triggered since then a remarkable activity[2]. Among the salient achievements in the study of this material are the absence of any kind of spin freezing down to at leat 50 mK through μ SR experiments and a gapless susceptibility evidenced through ¹⁷O NMR.

Vesignieite [3], BaCu₃V₂O₈(OH)₂, is one of the very few new recent candidate materials for this physics. In high quality powder samples[4], neutron diffraction measurements evidence that the kagome lattice is close to the perfect and indeed the susceptibility measured through ⁵¹V NMR closely resemble that of Herbert-smithite [5]. However the low *T* behaviour of Vesignieite surprisingly contrasts with the one of Herbertsmithite. A kink in the susceptibility below T = 9 K is matched to a slowing of the spin dynamics observed by μ SR and NMR. Our results point to an exotic quantum ground state with small frozen moments coexisting with slowly fluctuating ones. While Dzyaloshinskii-Moriya interaction is relevant in both compounds, we propose that it is large enough in Vesignieite to drive the system through a quantum critical point and towards a magnetic phase.

[1] Introduction to frustrated magnetism. C. Lacroix, P. Mendels and F. Mila, Springer (2011)

[2] For a review see : P. Mendels and F.Bert, J. Phys. Soc. Jpn 1, 011001 (2010)

[3] Y. Okamoto and H. Yoshida and Z. Hiroi, J. Phys. Soc. Jpn 78, 033701 (2009)

[4] R. Colman, F. Bert, D. Boldrin, A.D. Hillier, P. Mendels, and A.S. Wills, Phys. Rev. B 83, 180416 (2011)

[5] J. A. Quilliam, F. Bert, R. H. Colman, D. Boldrin, A. S. Wills and P. Mendels, arXiv:1105.4338