Co NMR in Ca3Co2O8: an intriguing frustrated Ising chain system

Roberto De Renzi ${ }^{1}$, Giuseppe Allodi ${ }^{1}$
${ }^{1}$ Department of Physics and Unità CNISM, Università degli Studi di Parma, Viale G. Usberti 7A, I-43100 Parma, Italy

$\mathrm{Ca}_{3} \mathrm{Co}_{2} \mathrm{O}_{6}$ is a geometrically frustrated, Ising-spin-chain system, with alternate stacking of a high-spin $(S=2) \mathrm{Co}^{3+}$ trigonal (T) site and a non-magnetic Co^{2+} octahedral (O) site along the c axis, arranged in a triangular lattice. Exchange coupling is ferromagnetic (FM) and stronger between neighboring T ions along the chains, whereas it is antiferromagnetic (AF) and much weaker between chains.

For $5 \mathrm{~K}<T<T_{c} \approx 25 \mathrm{~K}$. a long wavelength incommensurate spin density wave correctly describes the magnetic structure, whose average local justifies the name of modulated partially disordered antiferromagnet (MPDA). Magnetic field along \hat{c} leads to successive transitions to a ferrimagnetic (FI), and a FM phase. The mean field picture of these three phases is however questioned by the appearance of magnetization steps, hysteretic behaviour and metastability at lower tempertures.

In a single crystal the quadrupole split spectra of $\mathrm{O}{ }^{59} \mathrm{Co}$ from FM chains, at high field, are distinguished from the minority FI chains and majority FI chains, at lower fields.[1] The thermally activated nuclear spin-lattice relaxation of $\mathrm{T}^{59} \mathrm{Co}$ in the three distinct local configurations provide slightly different energy gaps that fit the Glauber model for the spin susceptibility of an Ising spin system. The intraand inter-chain exchange constants $J_{1}, J_{2}+J_{3}$ are the variational parameters, whose best-fit values yield the correct critical temperature T_{c} and the magnetic wavevector at $T=0$. This simple mean field model and its pitfalls will be discussed in relation with the stability of the zero-field ground state, which has been recently identified by neutron scattering [2] as the commensurate antiferromagnetic structure, surprisingly taking over the incommensurate spin-density wave at low temperature (below 5K).
[1] G. Allodi et al.,Phys. Rev. B 83, 104408 (2011).
[2] S. Agrestini et al., Phys. Rev. Lett. 106, 197204 (2011).

