Antiferromagnetism and high-*T_c* superconductivity in cuprates and Fe-pnictides

Hidekazu Mukuda¹, Akira Iyo², Yoshio Kitaoka¹

¹Osaka university, Japan ²AIST, Japan

In the first part, we review extensive studies on multilayered copper oxides by means of site-selective NMR, which have uncovered the intrinsic phase diagram of antiferromagnetism(AFM) and high-Tc superconductivity(HTSC) for a emergence disorder-free CuO₂ plane with hole carriers. We present the existence of AFM metallic state, the uniformly mixed phase of AFM and HTSC, and the dwave SC with a maximum of T_c just outside a critical carrier density, at which the AFM moment disappears. These results can be accounted for by the *Mott physics* based on the t-J model. The large superexchange interaction J_{in} plays the vital role as the glue for the Cooper pairs, which is the main reason for raising the T_c in cuprates.[1] In second topics, we present ⁷⁵As-nuclear quadrupole resonance (NQR) studies on $(Ca_4Al_2O_{6-\nu})(Fe_2As_2)$ with $T_c = 27$ K. Measurement of $1/T_1$ has revealed a significant development of AFM spin fluctuations down to T_c . Below T_c , the temperature dependence of $1/T_1$ without any trace of the coherence peak is well accounted for by an s_{\pm} -wave multiple gaps model. From the fact that T_c is comparable to T_c =28 K in the optimally-doped LaFeAsO_{1-v} in which AFM spin fluctuations are not dominant, we remark that AFM spin fluctuations are not a unique factor to enhance T_c among existing Fe-based superconductors, but a condition for optimizing SC should be addressed from the lattice structure point of view. [2]

[1] H. Mukuda et al, Special topics in J. Phys. Soc. Jpn (2012)

[2] H.Kinouchi et al., Phys. Rev. Lett, in press.