Low-Temperature Properties of the Candidate Quantum Spin Liquid in EtMe₃Sb[Pd(dmit)₂]₂ as Revealed by NMR.

G. Koutroulakis¹, T. Zhou², S. E. Brown², J. D. Thompson¹, R. Kato³

¹Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ²Department of Physics, University of California, Los Angeles, California 90024,

USA

³Condensed Molecular Materials Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan

In recent years, the two-dimensional spin-1/2 triangular lattice of the organic salt EtMe₃Sb[Pd(dmit)₂]₂ has emerged as a candidate for the realization of a quantum spin liquid. Furthermore, thermal conductivity and nuclear magnetic resonance (NMR) experiments unveiled the presence of a low-temperature instability in the spin liquid state, the opening of a spin gap. We performed a detailed ¹³C NMR study on this material at low temperatures (< 1.5 K) and for a wide range of external magnetic field values. In finite fields, a clear break in the temperature derivative of the spin lattice relaxation is observed at a temperature $T_m(H)$, with $T_m \rightarrow 0$ in the limit that $H \rightarrow 0$. We discuss these results in the context of possible instabilities, and existing thermodynamic data.