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Motivation for Fundamentally Charged Scalar Particles

QuantumChromoDynamics (QCD)

QCD is a quantum field theory describing the
strong interaction between quarks and gluons

QCD has different properties in different regions,
UV and IR sector have to be handled differently.

UV sector can be described by perturbative QCD,
because QCD is asymptotically free.

IR sector must be investigated by non-perturbative methods
like Dyson-Schwinger equations (DSEs), Lattice QCD, the
Renormalization Group or others.

IR: confinement ... long distance IR phenomenon, whose
underlying mechanism is still not fully understood.
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Motivation for Fundamentally Charged Scalar Particles

QCD - Results in Landau Gauge

Yang-Mills theory:

IR divergent ghost propagator,
finite/vanishing gluon propagator (confined gluons1)
(Kugo-Ojima/Gribov-Zwanziger scenario)

bare ghost-gluon vertex

3-gluon and 4-gluon vertex divergent2 (ghost-dominance)

1Alkofer,Hauck,von Smekal, Phys. Rev. Lett. 79, 3591(1997)
2Alkofer,Fischer,Llanes-Estrade, Phys. Lett. B611, 279(2005)
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Motivation for Fundamentally Charged Scalar Particles

Fundamentally Charged Scalars - Test for QCD?

QCD: 12 tensor structures for the quark-gluon vertex.
For fundamental scalar charges there are only two different
tensor structures for the scalar-gluon vertex.

On the lattice fermions are hard to implement. Scalars are
bosons and thus easier to describe in lattice QCD
(future work by Axel Maas).

Theory with fundamentally charged scalars could serve as a
test for QCD in the IR, if it had the same qualitative behavior.
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Dyson-Schwinger Equations for Fundamentally Charged Scalars

Lagrangian for Fundamentally Charged Scalars

L =
1

4
F a
µνF a

µν +
1

2ζ
(∂µAa

µ)2 + c̄a∂µDab
µ cb︸ ︷︷ ︸

Yang-Mills sector (Landau gauge ζ→0)

+

+
1

2
(Dµ,ijφ

∗
j )(Dµ,ikφk)− m2

2
φ∗i φi −

λ

4!
(φ∗i φi )

2︸ ︷︷ ︸
interactions of the scalar particle

→ primitively divergent n-point functions

-1 -1 -1
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Dyson-Schwinger Equations for Fundamentally Charged Scalars

“Phases”of the System

three different cases have to be investigated:

massless scalar particle

massive scalar particle,

no scalar condensate 〈φ2〉 = 0, unbroken “phase”
scalar condensate 〈φ2〉 6= 0,
i.e. Higgs phase (spontaneously broken “phase”)

Only the two cases without a condensate are analyzed within my
thesis.
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Dyson-Schwinger Equations for Fundamentally Charged Scalars

DSEs - Derivation

Dyson-Schwinger equations: non-perturbative functional method,
able to analyze the IR sector of QCD.
DSEs are the equations of motion of Green’s functions.

0 =

∫
Dφ δ

δφ
e−S[φ]+jiφi

several possibilities for the derivation of higher n-point functions:

algebraic method

graphical method3

3R. Alkofer, M. Q. Huber, K. Schwenzer: hep-th/0808.2939
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Dyson-Schwinger Equations for Fundamentally Charged Scalars

DSEs - One-Loop Truncation

DSE for the quark propagator

-1  = -1 -

DSE for the scalar particle propagator

-1  = -1 - - -1
2

- -

- - -
1

2
- -

1

2
- -

-

complications due
to two primitively
divergent vertices

(internal propagators are to be seen as dressed)
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Dyson-Schwinger Equations for Fundamentally Charged Scalars

DSEs - One-Loop Truncation

DSE for the quark propagator

-1  = -1 -

DSE for the scalar particle propagator

-1  = -1 - - -1
2

- -

- - -
1

2
- -

1

2
- -

-

(internal propagators are to be seen as dressed)
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Dyson-Schwinger Equations for Fundamentally Charged Scalars

Examples: Scalar Propagator and Scalar-Gluon Vertex in One-Loop Truncation

-1  = -1 - - -1
2

-

= + + + +

+ + -

DSEs are by construction infinitely coupled integral equations.

→ truncation needed!
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Dyson-Schwinger Equations for Fundamentally Charged Scalars

Skeleton Expansion

skeleton expansion

A loop expansion using dressed propagators and vertices, based on
the assumption of valid multiplicative renormalization up to all
loop-orders.

= + + + + ...

Figure: Exemplary graphs in a skeleton expansion for the ghost-loop in
the 3-gluon vertex.
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Dyson-Schwinger Equations for Fundamentally Charged Scalars

Ghost Contributions for One-Loop Approximation

@ a direct scalar-ghost interaction → two loop-order terms
including ghost-scalar interactions have to be considered4

→

Figure: Ghost contribution to the
scalar-gluon vertex DSE

Figure: Ghost contribution to the
2-scalar-2-gluon vertex DSE

4R. Alkofer, C. S. Fischer, F. J. Llanes-Estrada, K. Schwenzer: hep-ph/0804.3042
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Dyson-Schwinger Equations for Fundamentally Charged Scalars

Infrared Analysis - Power Law Ansatz

General Vertex can be decomposed in several tensor structures:

Γµνρ...(p1, . . . , pn) =
∑

i

Gi (p1, . . . , pn)T i
µνρ...(p1, . . . , pn)

T i . . . tensor structures, Gi . . . dressing functions

Gi (p1, . . . , pn) =
∑

j

(q2
j (p2

1 , . . . , p
2
n))δi,j ci ,j

(
p2
1

q2
j

, . . . ,
p2
n

q2
j

)

The IR dominating tensor has the highest order of singularity ⇒
power counting yields lowest exponent δj = min(i)(δi ,j)



The Vertex Function of Fundamentally Charged Scalars in Landau QCD

Dyson-Schwinger Equations for Fundamentally Charged Scalars

Uniform Scaling

uniform scaling: Possibly singular dressing functions for the case
that all external momenta vanish.

q2(p2
1 , . . . , p

2
n)→ 0⇔ p1, . . . , pn → 0 ∧ p2

1

q2
, . . . ,

p2
n

q2
constant

...

...

→ 0

→ 0

→
 0

→
 0

→ 0

Γ

soft singularities: In general singularities can emerge if only a
subset of pi → 0
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Dyson-Schwinger Equations for Fundamentally Charged Scalars

Propagators - Parametrization

Propagators and vertices contribute with the canonical and the
anomalous dimension, both are counted in the analysis giving a
solvable system of equations for the infrared exponents5.
Ansatz for the dressed propagators:

Scalar: Sij(p2) = −δij
Zs(p2)

p2
,→ count as (p2)−1+δs

Ghost: DG (p2) = −G (p2)

p2
,→ count as (p2)−1+δgh

Gluon: Dµν(p2) =

(
δµν −

pµpν
p2

)
Z (p2)

p2
,→ count as (p2)−1+δg

. . . similar ansaetze for vertices

5Alkofer,Hauck,von Smekal, Phys. Rev. Lett. 79, 3591(1997)
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Infrared Analysis of a Massless Scalar Particle

Power Counting - Massless Scalar Particle

m2 = 0 yields an IR divergent bare propagator for the scalar charge.

S0
ij (p2) = −δij

1

p2
, count as (p2)−1

The power counting in the DSE for the propagator of the scalar
particle yields:

-1  = -1 - - -1
2

-

1− δs = min {1, 1 + δs + δg + δsg , 1 + δg , 1 + δs}

⇒ −δs = min {0, δs + δg + δsg , δg , δs}
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Infrared Analysis of a Massless Scalar Particle

Skeleton Expansion Constraints for Anomalous Dimensions

Higher loop-orders in the skeleton expansion must not raise the
order of divergence. Thus the sum of the constituents in each
insertion is ≥ 0 ⇒ yields constraints for the infrared exponents:

(a): 2−1− 1− 1 +
1

2
+

1

2︸ ︷︷ ︸
canonical dimensions

+δs + δg + δgh + δsg + δggh ≥ 0

⇒ constraint for (a): δs + δg + δgh + δsg + δggh ≥ 0
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Infrared Analysis of a Massless Scalar Particle

Power Counting - Example:

ghost-gluon vertex:

=

+ +

power counting for the DSE for the
ghost-gluon vertex:

δggh = min( 0, δg + 2δgh + 2δggh| {z }
≥0 (constraint)

,

, 2δg + δgh + δggh + δ3g )| {z }
≥0(constraint)

A demanded stable skeleton expansions forbids a scaling
ghost-gluon vertex 6, it stays bare in all orders:

δggh = 0

6Alkofer,Fischer,Llanes-Estrade, Phys. Lett. B611, 279(2005)
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Infrared Analysis of a Massless Scalar Particle

δgh and δggh

ghost propagator: bare propagator is renormalized.

δgh = −
1

2

`
δg + δggh

´
= −

1

2
δg

parametrization: 1
2δg = κ = −δgh

general constraints → 0 ≤ κ < 1, numerical calculation yields

κ ≈ 0.595, see 7, 8, 9

infrared exponents for the gluon propagator δg , ghost propagator
δgh and the ghost-gluon vertex δggh

δg = 2κ, δgh = −κ, δggh = 0

7Lerche,von Smekal, Phys. Rev. D65, 125006 (2002)
8Pawlowski,Litim,Nedelko,von Smekal, Phys. Rev. Lett. 93, 152002 (2004)
9Zwanziger, Phys. Rev. D65, 094039 (2002)
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Infrared Analysis of a Massless Scalar Particle

Scalar Propagator and Scalar-Gluon Vertex

Figure: DSE for the scalar propagator in one-loop approximation

-1  = -1 - - -1
2

-

constraints for δs ?

primitively divergent 4-scalar vertex implies:

δsg ≤ 2δs + δsg

δs ≥ 0

. . . same for δg (Alkofer,Huber,Schwenzer:hep-th/0801.2762)
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Infrared Analysis of a Massless Scalar Particle

δs and δsg

δs stays bare up to all orders,
there is no consistent solution with δs > 0

infrared exponent for the scalar propagator

δs = 0

Consistency with the skeleton expansion yields 3 different
possibilities for the scaling behavior of the scalar-gluon vertex δsg :

decoupling scalar sector:

δsg = 0

scaling scalar sector:
δsg = −κ

third solution drops by another consistency check
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Infrared Analysis of a Massless Scalar Particle

Anomalous Dimensions for a Massless Scalar Particle

δs δg δgh δsg δggh δ3g δ4g δ4s δssgg

0 0 0 0 0 0 0 0 0
0 2κ −κ 0 0 −3κ −4κ 0 0
0 2κ −κ −κ 0 −3κ −4κ 0 −2κ

Table: Infrared exponents of the Green’s functions for a quantum field
theory including massless fundamentally charged scalar particles

δs must be 0, due to stable skeleton expansion.

4-point functions are not dominating lower n-point functions.

trivial solution: all vertices stay bare, κ = 0

decoupling solution: scalar charges decouple from the YM sector.

scaling solution: scalars are strongly coupled to YM sector.
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Infrared Analysis of a Massive Scalar Particle without a Scalar Condensate

Massive Particle - Difference

Difference in power counting:

m2 6= 0: bare propagator has no divergency in the infrared, it
approaches a finite value for p2 → 0

Sij(p2 → 0)→ −δij
1

m2

this not necessarily true for dressed propagator →
for the dressed propagator the canonical and
anomalous dimension have to be counted.

Only change is the bare propagator in the scalar DSE ⇒
causes major changes in the structure of solutions,
because the canonical dimensions do not sum up to zero.
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Infrared Analysis of a Massive Scalar Particle without a Scalar Condensate

Anomalous Dimensions for the Massive Case

δs δg δgh δsg δggh δ3g δ4g δ4s δssgg

1 0 0 0 0 0 0 0 0
1 2κ −κ 0 0 −3κ −4κ 0 0
1 2κ −κ −1− κ 0 −3κ −4κ //////////−1 + κ// /////////////////////////////−1− 2κ ≤ δssgg < 0

Table: Infrared exponents of the Green’s functions for a quantum field theory
including massive fundamentally charged scalar particles, without a scalar
condensate

trivial solution: all vertices stay bare

decoupling solution: scalar particles decouple from YM-sector

confining solution: scalar particles have scaling behavior in the IR

Problem

The only solution with a scaling scalar sector is not consistent.
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Infrared Analysis of a Massive Scalar Particle without a Scalar Condensate

Problems with the Approximation for the Massive Case

inconsistency of scaling solution :
First order graph must scale with the
highest order of singularity of all
possible diagrams!

−1 + 2κ︸ ︷︷ ︸
gluon prop.

+ 2(−1

2
− κ︸ ︷︷ ︸

scalar-gluon v.

) = −2 < δ4s

−2→ 1
p4 : order of singularity is high enough to yield confinement.

The calculation in two-loop approximation in the uniform limit was

checked, but yields the same infrared behaviour.

⇒ Problem is caused by another mechanism

SOFT SINGULARITIES
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Infrared Analysis of a Massive Scalar Particle without a Scalar Condensate

Soft Singularities

Singularities can emerge, if not all momenta vanish uniformly,
but rather only a subset scales → 0, whereas the others stay
finite. These Green’s functions possibly have a different IR
scaling behavior.

→ Decompose momentum integral into different regions for
the particular scales.

Example: scalar-gluon vertex
→ additional infrared exponents

δgl
sg , δssg : different scaling behavior for only one vanishing external

momentum
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Infrared Analysis of a Massive Scalar Particle without a Scalar Condensate

Kinematic Divergencies for Fundamentally Charged Scalars

Great variety of different kinematic combinations, each adding a
new anomalous dimension and equation to be determined
consistently. → Beyond the scope of this diploma thesis.

4-scalar vertex: possibly different anomalous dimensions

for δu
4s , δs

4s and δ2s
4s

2-scalar-2-gluon vertex: possibly different anomalous

dimensions for δu
ssgg , δs

ssgg ,δ2s
ssgg ,δg

ssgg and δ2g
ssgg

Compare with QCD

DSE for the quark-antiquark is topologically equal to the
four-scalar DSE, → comparison with QCD and a heavy quark
scattering kernel is possible, if the canonical dimensions for
fundamental scalar charges cancel in such a way, that the QCD
equations are reproduced.
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Infrared Analysis of a Massive Scalar Particle without a Scalar Condensate

Future Work - Comparison with QCD

quark-antiquark scattering kernel

(a) The uniform infrared limit is not the leading behavior
for massive particles.

(b) Kinematic divergencies with a soft-gluon dominate
the IR sector. → degree of divergence high enough
to yield confinement.
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Summary

Summary

massless particle

no confining solution, as
in chiral QCD

decoupling solution

quenched massive particle

confining solution possible

In numerical calculations
the confining solution in
quenched QCD is realized.

⇒ The theory of fundamentally charged scalars may provide a
suitable test for further analysis of the origin of confinement in
QCD.

Thank you for your attention!
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