Holographic imaging of nucleon via deeply virtual Compton scattering and conformal symmetry

Krešimir Kumerički

Department of Physics University of Zagreb

Collaboration with:

Dieter Müller (Regensburg), Kornelija Passek-Kumerički (Regensburg, Zagreb), Andreas Schäfer (Regensburg)

> Institut "Jožef Stefan" Ljubljana, 26 April 2007

Conformal Approach to DVCS Beyond NLO

Results

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Summary

Outline

Introduction to Generalized Parton Distributions (GPDs)

Proton Structure Definition and properties of GPDs Deeply virtual Compton scattering (DVCS)

Conformal Approach to DVCS Beyond NLO

Conformal Approach DVCS at NNLO perturbative QCD

Results

Choice of GPD Ansatz Size of Radiative Corrections Fitting GPDs to Data 3D image of proton

Summary

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Parton distribution functions

• Deeply inelastic scattering, $-q_1^2 o \infty, \; x_{BJ} \equiv rac{-q_1^2}{2 p \cdot q_1} o {
m const}$

Conformal Approach to DVCS Beyond NLO

Results 0000000 Summary

Parton distribution functions

• Deeply inelastic scattering, $-q_1^2 \to \infty, \ x_{BJ} \equiv rac{-q_1^2}{2p \cdot q_1} \to {
m const}$

・ロト・西ト・西ト・日・ 日・ シック

Conformal Approach to DVCS Beyond NLO

Results 0000000 Summary

Parton distribution functions

• Deeply inelastic scattering, $-q_1^2 \to \infty, \ x_{BJ} \equiv \frac{-q_1^2}{2p \cdot q_1} \to {\rm const}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Parton distribution functions

Deeply inelastic scattering, $-q_1^2 \to \infty, \ x_{BJ} \equiv \frac{-q_1^2}{2p \cdot q_1} \to {\rm const}$

no information on spatial distribution of partons

Conformal Approach to DVCS Beyond NLO

Results 0000000 Summary

Electromagnetic form factors

• Dirac and Pauli form factors:

 q_1

 $F_{1,2}(t=q_1^2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conformal Approach to DVCS Beyond NLO

Results 0000000 Summary

Electromagnetic form factors

• Dirac and Pauli form factors:

$$q(b_{\perp}) \sim \int \mathrm{d} b_{\perp} \, e^{i q_1 \cdot b_{\perp}} F_1(t=q_1^2)$$

 q_1

'n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conformal Approach to DVCS Beyond NLO

Results 0000000 Summary

х

Electromagnetic form factors • Dirac and Pauli form factors: $q(b_{\perp}) \sim \int \mathrm{d}b_{\perp} \, e^{iq_1 \cdot b_{\perp}} F_1(t)$

 b_{\perp}

 q_1

п

Conformal Approach to DVCS Beyond NLO

Results 0000000 Summary

Electromagnetic form factors Dirac and Pauli form factors: • $q(b_{\perp})\sim\int\mathrm{d}b_{\perp}\,e^{iq_{1}\cdot b_{\perp}}F_{1}(t=q_{1}^{2})$ $q(x, b_{\perp})$ n'

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Conformal Approach to DVCS Beyond NLO

Results 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Summary

Electromagnetic form factors

• Dirac and Pauli form factors:

Conformal Approach to DVCS Beyond NLO

Results 0000000

・ロト ・ 雪 ト ・ ヨ ト

э

Summary

Probing the proton with two photons

• Deeply virtual Compton scattering [Müller '92, et al. '94]

Conformal Approach to DVCS Beyond NLO

Results 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Summary

Probing the proton with two photons

• Deeply virtual Compton scattering [Müller '92, et al. '94]

• QCD: factorization of short- and long-distance physics

Conformal Approach to DVCS Beyond NLO

Results 0000000 Summary

Probing the proton with two photons

• Deeply virtual Compton scattering [Müller '92, et al. '94]

• QCD: factorization of short- and long-distance physics

Conformal Approach to DVCS Beyond NLO

Results 0000000

Summary

Definition of GPDs

• In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

$$F^{q}(x,\eta,\Delta^{2}) = \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2} | \bar{q}(-z)\gamma^{+}q(z) | P_{1} \rangle \Big|_{z^{+}=0, z_{\perp}=0}$$

$$F^{g}(x,\eta,\Delta^{2}) = \frac{4}{P^{+}} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2} | G_{a}^{+\mu}(-z) G_{a\mu}^{+}(z) | P_{1} \rangle \Big|_{...}$$

 $P=P_1+P_2\ ; \qquad \Delta=P_2-P_1\ ; \qquad \eta=-rac{\Delta^+}{P^+}\ (ext{skewedness})$

Conformal Approach to DVCS Beyond NLO

Results 0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Summary

Properties of GPDs

• Decomposing into helicity conserving and non-conserving part:

$$F^{a} = \frac{\overline{u}(P_{2})\gamma^{+}u(P_{1})}{P^{+}}H^{a} + \frac{\overline{u}(P_{2})i\sigma^{+\nu}u(P_{1})\Delta_{\nu}}{2MP^{+}}E^{a} \qquad a = q,g$$

Conformal Approach to DVCS Beyond NLO

Results 0000000

Summary

Properties of GPDs

• Decomposing into helicity conserving and non-conserving part:

$$F^{a} = \frac{\overline{u}(P_{2})\gamma^{+}u(P_{1})}{P^{+}}H^{a} + \frac{\overline{u}(P_{2})i\sigma^{+\nu}u(P_{1})\Delta_{\nu}}{2MP^{+}}E^{a} \qquad a = q,g$$

• Forward limit $(\Delta \rightarrow 0)$: \Rightarrow GPD \rightarrow PDF

$$F^{q}(x,0,0) = H^{q}(x,0,0) = \theta(x)q(x) - \theta(-x)\overline{q}(-x)$$

Conformal Approach to DVCS Beyond NLO

Results 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Summary

Properties of GPDs

• Decomposing into helicity conserving and non-conserving part:

$$F^{a} = \frac{\overline{u}(P_{2})\gamma^{+}u(P_{1})}{P^{+}}H^{a} + \frac{\overline{u}(P_{2})i\sigma^{+\nu}u(P_{1})\Delta_{\nu}}{2MP^{+}}E^{a} \qquad a = q,g$$

• Forward limit $(\Delta \rightarrow 0)$: \Rightarrow GPD \rightarrow PDF

$$F^{q}(x,0,0) = H^{q}(x,0,0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x)$$

Sum rules:

$$\int_{-1}^{1} dx \begin{cases} H^{q}(x,\eta,\Delta^{2}) \\ E^{q}(x,\eta,\Delta^{2}) \end{cases} = \begin{cases} F_{1}^{q}(\Delta^{2}) \\ F_{2}^{q}(\Delta^{2}) \end{cases}$$

Conformal Approach to DVCS Beyond NLO

Results 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Summary

Properties of GPDs

• Decomposing into helicity conserving and non-conserving part:

$$F^{a} = \frac{\overline{u}(P_{2})\gamma^{+}u(P_{1})}{P^{+}}H^{a} + \frac{\overline{u}(P_{2})i\sigma^{+\nu}u(P_{1})\Delta_{\nu}}{2MP^{+}}E^{a} \qquad a = q,g$$

• Forward limit $(\Delta \rightarrow 0)$: \Rightarrow GPD \rightarrow PDF

$$F^{q}(x,0,0) = H^{q}(x,0,0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x)$$

• Sum rules:

$$\int_{-1}^{1} dx \begin{cases} H^{q}(x,\eta,\Delta^{2}) \\ E^{q}(x,\eta,\Delta^{2}) \end{cases} = \begin{cases} F_{1}^{q}(\Delta^{2}) \\ F_{2}^{q}(\Delta^{2}) \end{cases}$$

Possibility of flavour decomposition of proton spin

$$\frac{1}{2} \int_{-1}^{1} dx x \Big[H^{q}(x,\eta,\Delta^{2}) + E^{q}(x,\eta,\Delta^{2}) \Big] = J^{q}(\Delta^{2}) \qquad \text{[Ji '96]}$$

Results 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Summary

Relevance of GPDs for collider physics

- heavy particle production ⇒ collision is more central
 ⇒ larger probability for multiple parton collisions
- [Frankfurt, Strikman and Weiss '04]

Introduction to GPDs

Results 0000000 Summary

Relevance of GPDs for collider physics

- heavy particle production ⇒ collision is more central
 ⇒ larger probability for multiple parton collisions
- [Frankfurt, Strikman and Weiss '04]
- No influence on total inclusive cross sections, but event structure is sensitive to transversal parton distributions.
- Relevant for LHC?

Introduction to GPDs

Conformal Approach to DVCS Beyond NLO

Results 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Summary

Deeply virtual Compton scattering (I)

• Measured in leptoproduction of a real photon:

Conformal Approach to DVCS Beyond NLO

Results 0000000

イロト 不得 トイヨト イヨト

э

Summary

Deeply virtual Compton scattering (I)

• Measured in leptoproduction of a real photon:

• There is a background process

Conformal Approach to DVCS Beyond NLO

Results 0000000 Summary

Deeply virtual Compton scattering (I)

• Measured in leptoproduction of a real photon:

 There is a background process but it can be used to our advantage:

$\sigma \propto |\mathcal{T}_{\rm DVCS}|^2 + |\mathcal{T}_{\rm BH}|^2 + \mathcal{T}_{\rm DVCS}^* \mathcal{T}_{\rm BH} + \mathcal{T}_{\rm DVCS} \mathcal{T}_{\rm BH}^*$

• Using $T_{\rm BH}$ as a referent "source" enables measurement of the phase of $T_{\rm DVCS} \rightarrow$ proton "holography" [Belitsky and Müller '02]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\mathcal{A}(\xi, \Delta^2, \mathcal{Q}^2) = \sum_i \int \mathrm{d}x \ C_i(x, \xi, \mathcal{Q}^2/\mu^2) \ \mathsf{GPD}_i(x, \eta = \xi, \Delta^2, \mu^2)$$

Conformal Approach to DVCS Beyond NLO

Results 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Deeply virtual Compton scattering (II) $P = P_1 + P_2$ $q = (q_1 + q_2)/2$ $q_1^2 = Q^2$ $A = P_2 - P_1$ $-q_1^2 = Q^2$ $Q^2/2 \rightarrow \infty$ P_1 DVCS P_2 $\xi = \frac{-q^2}{2P \cdot q} \rightarrow \text{const}$

$$\mathcal{A}(\xi, \Delta^2, \mathcal{Q}^2) = \sum_i \int \mathrm{d}x \ C_i(x, \xi, \mathcal{Q}^2/\mu^2) \ \mathsf{GPD}_i(x, \eta = \xi, \Delta^2, \mu^2)$$

- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate

Deeply virtual Compton scattering (II) $P = P_1 + P_2$ $q = (q_1 + q_2)/2$ $\Delta = P_2 - P_1$ $-q^2 \simeq Q^2/2 \to \infty$ $q_{2}^{2} = 0$ $\xi = \frac{-q^2}{2P \cdot q} \rightarrow \text{const}$ DVCS P_1 P_{n}

$$\mathcal{A}(\xi, \Delta^2, \mathcal{Q}^2) = \sum_i \int \mathrm{d}x \ C_i(x, \xi, \mathcal{Q}^2/\mu^2) \ \mathsf{GPD}_i(x, \eta = \xi, \Delta^2, \mu^2)$$

- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- gluon contribution to C_i starts at NLO
- DIS experience at small x : gluons \gg sea quarks

Conformal Approach to DVCS Beyond NLO

Results 0000000 Summary

$$\mathcal{A}(\xi, \Delta^2, \mathcal{Q}^2) = \sum_i \int \mathrm{d}x \ C_i(x, \xi, \mathcal{Q}^2/\mu^2) \ \mathsf{GPD}_i(x, \eta = \xi, \Delta^2, \mu^2)$$

- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- gluon contribution to C_i starts at NLO
- DIS experience at small x : gluons \gg sea quarks
- → need NNLO to stabilize perturbation series and investigate convergence

Conformal Approach to DVCS Beyond NLO

Results 0000000 Summary

$$\mathcal{A}(\xi, \Delta^2, \mathcal{Q}^2) = \sum_i \int \mathrm{d}x \ C_i(x, \xi, \mathcal{Q}^2/\mu^2) \ \mathsf{GPD}_i(x, \eta = \xi, \Delta^2, \mu^2)$$

- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- gluon contribution to C_i starts at NLO
- DIS experience at small x : gluons \gg sea quarks
- ⇒ need NNLO to stabilize perturbation series and investigate convergence ⇒ conformal approach

Conformal Approach to DVCS Beyond NLO

Results 0000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Summary

Operator Product Expansion

$$J_{\rm em}(x)J_{\rm em}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^2}\right)^2 x_-^{n+k+1} C_{n,k} O_{n,k}$$
$$O_{n,k} \equiv (i\partial_+)^k \, \bar{\psi} \, \gamma^+ (i \, \overleftrightarrow{D}_+)^n \psi$$
$$\overleftrightarrow{D}_+ \equiv \overrightarrow{D}_+ - \overleftarrow{D}_+$$

Conformal Approach to DVCS Beyond NLO •0000000

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Operator Product Expansion

$$J_{\rm em}(x)J_{\rm em}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^2}\right)^2 x_{-}^{n+k+1} C_{n,k} O_{n,k}$$
$$k = 0: \qquad O_{n,0} \equiv \qquad \bar{\psi} \gamma^+ (i \stackrel{\leftrightarrow}{D}_+)^n \psi$$
$$\stackrel{\leftrightarrow}{D}_+ \equiv \vec{D}_+ - \stackrel{\leftarrow}{D}_+$$

• $C_{n,0}$ and γ_n of $O_{n,0}$ are well known from DIS up to NNLO.

Conformal Approach to DVCS Beyond NLO • 00000000

 $J_{\rm em}(x)J_{\rm em}(0)\longrightarrow \sum_{n=0}^{\infty}\sum_{k=0}^{\infty}\left(\frac{1}{x^2}\right)^2 x_{-}^{n+k+1}C_{n,k}O_{n,k}$

• $C_{n,0}$ and γ_n of $O_{n,0}$ are well known from DIS up to NNLO.

 $\overrightarrow{D}_{+} \equiv \overrightarrow{D}_{+} - \overleftarrow{D}_{+}$

• But $C_{n,k}$ and $\gamma_{n,k}$ are not so well known.

• $\gamma_{n,k} \neq 0 \Rightarrow$ operators $O_{n,k}$ mix under evolution.

Operator Product Expansion

 $O_{n\,k} \equiv (i\partial_+)^k \, \bar{\psi} \, \gamma^+ (i \stackrel{\leftrightarrow}{D}_+)^n \psi \qquad i\partial_+ \stackrel{\text{M.E.}}{\to} -\Delta_+$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Conformal Approach to DVCS Beyond NLO • 00000000

Operator Product Expansion

$$J_{\rm em}(x)J_{\rm em}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^2}\right)^2 x_-^{n+k+1} C_{n,k} O_{n,k}$$
$$O_{n,k} \equiv (i\partial_+)^k \, \bar{\psi} \, \gamma^+ (i \stackrel{\leftrightarrow}{D}_+)^n \psi \qquad i\partial_+ \stackrel{{\rm M.E.}}{\to} -\Delta_+$$
$$\stackrel{\leftrightarrow}{D}_+ \equiv \vec{D}_+ - \vec{D}_+$$

- $C_{n,0}$ and γ_n of $O_{n,0}$ are well known from DIS up to NNLO.
- But $C_{n,k}$ and $\gamma_{n,k}$ are not so well known.
- $\gamma_{n,k} \neq 0 \Rightarrow$ operators $O_{n,k}$ mix under evolution.
- Choosing operator basis in which $\gamma_{n,k}$ is diagonal would help. But how to diagonalize unknown matrix?!

Conformal Approach to DVCS Beyond NLO •••••••

▲□▼▲□▼▲□▼▲□▼ □ ● ●

$$J_{\mathrm{em}}(x)J_{\mathrm{em}}(0)\longrightarrow \sum_{n=0}^{\infty}\sum_{k=0}^{\infty}\left(rac{1}{x^2}
ight)^2 x_{-}^{n+k+1}C_{n,k}O_{n,k}$$

Operator Product Expansion

$$O_{n,k} \equiv (i\partial_+)^k \, \bar{\psi} \, \gamma^+ (i \stackrel{\leftrightarrow}{D}_+)^n \psi \qquad i\partial_+ \stackrel{\text{M.E.}}{\to} -\Delta_+$$
$$\stackrel{\leftrightarrow}{D}_+ \equiv \stackrel{\leftarrow}{D}_+ - \stackrel{\leftarrow}{D}_+$$

- $C_{n,0}$ and γ_n of $O_{n,0}$ are well known from DIS up to NNLO.
- But $C_{n,k}$ and $\gamma_{n,k}$ are not so well known.
- $\gamma_{n,k} \neq 0 \Rightarrow$ operators $O_{n,k}$ mix under evolution.
- Choosing operator basis in which $\gamma_{n,k}$ is diagonal would help. But how to diagonalize unknown matrix?!
- (At least) to LO answer is: use conformal operators.

Conformal Approach to DVCS Beyond NLO 00000000

 \leftrightarrow

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \,\overline{\psi} \,\gamma^+ \, C_n^{3/2} \left(\frac{D^+}{\partial^+}\right) \psi$$

- they have well-defined conformal spin j = n + 2
- massless QCD is conformally symmetric at the tree level \Rightarrow conformal spin is conserved

Conformal Approach to DVCS Beyond NLO 00000000

Results 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 \leftrightarrow

Summary

Conformal operators

$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \,\bar{\psi} \,\gamma^+ \, C_n^{3/2} \left(\frac{D^+}{\partial^+}\right) \psi$$

- they have well-defined conformal spin j = n + 2
- massless QCD is conformally symmetric at the tree level ⇒ conformal spin is conserved
- mixing of operators with different n is forbidden by conformal symmetry, while mixing of those with different n + k is forbidden by Lorentz symmetry
Conformal Approach to DVCS Beyond NLO

Results 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 \leftrightarrow

Summary

Conformal operators

$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \,\bar{\psi} \,\gamma^+ \, C_n^{3/2} \left(\frac{D^+}{\partial^+}\right) \psi$$

- they have well-defined conformal spin j = n + 2
- massless QCD is conformally symmetric at the tree level ⇒ conformal spin is conserved
- mixing of operators with different *n* is forbidden by conformal symmetry, while mixing of those with different n + k is forbidden by Lorentz symmetry $\Rightarrow \mathbb{O}_{n,n+k}$ don't mix at LO

Conformal Approach to DVCS Beyond NLO

Results 0000000

 \leftrightarrow

Summary

Conformal operators

$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \,\bar{\psi} \,\gamma^+ \, C_n^{3/2} \left(\frac{D^+}{\partial^+}\right) \psi$$

- they have well-defined conformal spin j = n + 2
- massless QCD is conformally symmetric at the tree level ⇒ conformal spin is conserved
- mixing of operators with different n is forbidden by conformal symmetry, while mixing of those with different n + k is forbidden by Lorentz symmetry ⇒ O_{n,n+k} don't mix at LO
- conformal symmetry broken at the loop level (renormalization introduces mass scale, dimensional transmutation) ⇒
 - running of the coupling constant $\partial g/\partial \ln \mu \equiv \beta \neq 0$
 - anomalous dimensions of operators $\gamma_{jk} = \delta_{jk}\gamma_j + \gamma_{jk}^{ND}$

Conformal Approach to DVCS Beyond NLO

Results 0000000

 \leftrightarrow

Summary

Conformal operators

$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \,\bar{\psi} \,\gamma^+ \, C_n^{3/2} \left(\frac{D^+}{\partial^+}\right) \psi$$

- they have well-defined conformal spin j = n + 2
- massless QCD is conformally symmetric at the tree level ⇒ conformal spin is conserved
- mixing of operators with different n is forbidden by conformal symmetry, while mixing of those with different n + k is forbidden by Lorentz symmetry ⇒ O_{n,n+k} don't mix at LO
- conformal symmetry broken at the loop level (renormalization introduces mass scale, dimensional transmutation) ⇒
 - running of the coupling constant $\partial g/\partial \ln \mu \equiv \beta \neq 0$
 - anomalous dimensions of operators $\gamma_{jk} = \delta_{jk}\gamma_j + \gamma_{jk}^{ND}$
 - $\Rightarrow \mathbb{O}_{n,n+k}$ start to mix at NLO

Results 0000000

Summary

Conformal Towers

Results 0000000

Summary

Conformal Towers

Results 0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary

Conformal Towers

Results 0000000 Summary

• Diagonalize in artificial $\beta = 0$ theory by changing scheme

$$\mathbb{O}^{\mathrm{CS}} = B^{-1} \mathbb{O}^{\overline{\mathrm{MS}}} \qquad \text{so that} \qquad \gamma_{ik}^{\mathsf{CS}} = \delta_{ik} \gamma_k$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Results

Summary

• Diagonalize in artificial $\beta = 0$ theory by changing scheme

$$\mathbb{O}^{\mathrm{CS}} = B^{-1} \mathbb{O}^{\overline{\mathrm{MS}}} \qquad \text{so that} \qquad \gamma_{ik}^{\mathsf{CS}} = \delta_{jk} \gamma_k$$

Results 2000000

イロト 不得 トイヨト イヨト

э

Summary

Conformal Towers

• Diagonalize in artificial $\beta = 0$ theory by changing scheme

$$\mathbb{O}^{\mathrm{CS}} = B^{-1} \mathbb{O}^{\overline{\mathrm{MS}}}$$
 so that $\gamma_{jk}^{\mathsf{CS}} = \delta_{jk} \gamma_k$

•
$$C_{n,k} = (-1)^k \frac{(n+2)_k}{k!(2n+4)_k} C_{n,0} \implies \text{summing complete tower}$$

Conformal Approach to DVCS Beyond NLO

Results 0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Summary

 $\beta \neq 0$ (I)

• In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$\gamma_{jk}^{\mathsf{CS}} = \delta_{jk}\gamma_k + \frac{\beta}{g}\Delta_{jk}$$

Conformal Approach to DVCS Beyond NLO

Results 0000000

Summary

 $\beta \neq 0$ (I)

• In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$\gamma_{jk}^{\mathsf{CS}} = \delta_{jk}\gamma_k + \frac{\beta}{g}\Delta_{jk}$$

- However, there is also ambiguity in $\overline{\text{MS}} \rightarrow \text{CS}$ rotation matrix:

$$B = B^{(\beta=0)} + \frac{\beta}{g} \delta B$$

Conformal Approach to DVCS Beyond NLO

Results 0000000

Summary

 $\beta \neq 0$ (I)

• In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$\gamma_{jk}^{\mathsf{CS}} = \delta_{jk}\gamma_k + \frac{\beta}{g}\Delta_{jk}$$

• However, there is also ambiguity in $\overline{\text{MS}} \rightarrow \text{CS}$ rotation matrix:

$$B = B^{(eta=0)} + rac{eta}{g} \delta B$$

• By judicious choice of δB one can "push" mixing to NNLO ($\overline{\text{CS}}$ scheme, [Melić et al.]).

Conformal Approach to DVCS Beyond NLO

Results 0000000

Summary

 $\beta \neq 0$ (I)

• In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$\gamma_{jk}^{\mathsf{CS}} = \delta_{jk}\gamma_k + \frac{\beta}{g}\Delta_{jk}$$

• However, there is also ambiguity in $\overline{\text{MS}} \rightarrow \text{CS}$ rotation matrix:

$$B = B^{(eta=0)} + rac{eta}{g} \delta B$$

- By judicious choice of δB one can "push" mixing to NNLO ($\overline{\text{CS}}$ scheme, [Melić et al.]).
- But how to calculate rotation matrix *B*? This is problem equivalent to calculation of $\gamma_{j,k}$.

Conformal Approach to DVCS Beyond NLO 00000000

Results 0000000

Summary

$\beta \neq 0$ (II)

• The $B^{(\beta=0)}$ is constrained by conformal Ward identities ...

$$B_{jk}^{(\beta=0)\text{NLO}} = \delta_{jk} - \frac{\alpha_s}{2\pi} \theta(j > k) \frac{\gamma_{jk}^{\text{SCT, LO}}}{a_{jk}} \qquad (a_{jk} - \text{known matrix})$$
[Müller '93]

 $\mathsf{SCT} \equiv \mathsf{special} \ \mathsf{conformal} \ \mathsf{transformation}$

Conformal Approach to DVCS Beyond NLO 00000000

Results 0000000

Summary

$\beta \neq 0$ (II)

• The $B^{(\beta=0)}$ is constrained by conformal Ward identities ...

$$B_{jk}^{(\beta=0)\text{NLO}} = \delta_{jk} - \frac{\alpha_s}{2\pi} \theta(j > k) \frac{\gamma_{jk}^{\text{sct, LO}}}{a_{jk}} \qquad (a_{jk} - \text{known matrix})$$
[Müller '93]

 $\mathsf{SCT} \equiv \mathsf{special} \ \mathsf{conformal} \ \mathsf{transformation}$

• ... and, as a consequence

$$\overline{^{\text{MS}}\gamma_{jk}^{\text{ND},(1)}} = \frac{\left[\gamma^{\text{SCT, }(0)} - \beta_0 \frac{b}{g}, \gamma^{(0)}\right]_{jk}}{a_{jk}}$$

Conformal Approach to DVCS Beyond NLO

Results 0000000

Summary

$\beta \neq 0$ (II)

• The $B^{(\beta=0)}$ is constrained by conformal Ward identities ...

$$B_{jk}^{(\beta=0)\text{NLO}} = \delta_{jk} - \frac{\alpha_s}{2\pi} \theta(j > k) \frac{\gamma_{jk}^{\text{SCT, LO}}}{a_{jk}} \qquad (a_{jk} - \text{known matrix})$$
[Müller '93]

 $\mathsf{SCT} \equiv \mathsf{special} \ \mathsf{conformal} \ \mathsf{transformation}$

• ... and, as a consequence

$$\overline{\mathsf{MS}}\gamma_{jk}^{\mathsf{ND},(1)} = \frac{\left[\gamma^{\mathsf{SCT}, (0)} - \beta_0 \frac{b}{g}, \gamma^{(0)}\right]_{jk}}{a_{jk}}$$

 Final result: *n*-loop DIS (diagonal) result + (n - 1)-loop SCT anomaly = *n*-loop non-diagonal prediction

Conformal Approach to DVCS Beyond NLO

Results

Summary

NNLO DVCS (I)

• DVCS amplitude in terms of conformal moments:

$${}^{S}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \mathbf{H}_{j}(\xi=\eta,\Delta^{2},\mu^{2})$$
$$H_{j}^{q}(\eta,\ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x,\eta,\ldots)$$

Conformal Approach to DVCS Beyond NLO

Results 0000000

Summary

NNLO DVCS (I)

• DVCS amplitude in terms of conformal moments:

$${}^{S}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \mathbf{H}_{j}(\xi=\eta,\Delta^{2},\mu^{2})$$
$$H_{j}^{q}(\eta,\ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x,\eta,\ldots)$$

• ... analogous to Mellin moments in DIS: $x^n \to C_n^{3/2}(x)$

Conformal Approach to DVCS Beyond NLO

Results

Summary

 \Rightarrow

NNLO DVCS (I)

• DVCS amplitude in terms of conformal moments:

$${}^{S}\mathcal{H}(\xi,\Delta^{2},\mathcal{Q}^{2}) = 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \mathbf{H}_{j}(\xi=\eta,\Delta^{2},\mu^{2})$$
$$H_{j}^{q}(\eta,\ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x,\eta,\ldots)$$

- ... analogous to Mellin moments in DIS: $x^n \to C_n^{3/2}(x)$
- Here, Wilson coefficients C_i read ...

Conformal Approach to DVCS Beyond NLO $\circ \circ \circ \circ \circ \circ \circ \circ$

Results 0000000 Summary

NNLO DVCS (II)

$$C_{j}(Q^{2}/\mu^{2}, Q^{2}/\mu^{*2}, \alpha_{s}(\mu)) = \sum_{k=j}^{\infty} C_{k}(1, \alpha_{s}(Q)) \mathcal{P} \exp\left\{\int_{Q}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{j}(\alpha_{s}(\mu'))\delta_{kj} + \frac{\beta}{g}\Delta_{kj}(\alpha_{s}(\mu'), \mu'/\mu^{*})\right]\right\}$$

with

$$C_{j}(1,\alpha_{s}(Q)) = \frac{2^{1+j+\gamma_{j}(\alpha_{s})/2}\Gamma\left(\frac{5}{2}+j+\gamma_{j}(\alpha_{s})/2\right)}{\Gamma(3/2)\Gamma\left(3+j+\gamma_{j}(\alpha_{s})/2\right)} c_{j}^{\overline{\mathsf{MS}},\mathsf{DIS}}(\alpha_{s})$$

• $\frac{2^{\cdots}\Gamma(\cdots)}{\Gamma(3/2)\Gamma(\cdots)}$ is result of resumming the conformal tower j

◆□ > ◆□ > ◆ □ > ◆ □ > □ = ● 今 < ○

Results 0000000

・ロト・日本・モート モー うへぐ

Summary

NNLO DVCS (II)

$$C_{j}(Q^{2}/\mu^{2}, Q^{2}/\mu^{*2}, \alpha_{s}(\mu)) = \sum_{k=j}^{\infty} C_{k}(1, \alpha_{s}(Q)) \mathcal{P} \exp\left\{\int_{Q}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{j}(\alpha_{s}(\mu'))\delta_{kj} + \frac{\beta}{g}\Delta_{kj}(\alpha_{s}(\mu'), \mu'/\mu^{*})\right]\right\}$$

with

$$C_{j}(1,\alpha_{s}(Q)) = \frac{2^{1+j+\gamma_{j}(\alpha_{s})/2}\Gamma\left(\frac{5}{2}+j+\gamma_{j}(\alpha_{s})/2\right)}{\Gamma(3/2)\Gamma\left(3+j+\gamma_{j}(\alpha_{s})/2\right)} c_{j}^{\overline{\mathsf{MS}},\mathsf{DIS}}(\alpha_{s})$$

 ^{2···Γ(···)}/_{Γ(3/2)Γ(···)} is result of resumming the conformal tower j

 c_j^{MS,DIS}(α_s) from [Zijlstra, v. Neerven '92, '94, v. Neerven and Vogt '00]

Conformal Approach to DVCS Beyond NLO $\circ\circ\circ\circ\circ\circ\circ\circ$

Results 0000000 Summary

NNLO DVCS (II)

$$C_{j}(Q^{2}/\mu^{2}, Q^{2}/\mu^{*2}, \alpha_{s}(\mu)) = \sum_{k=j}^{\infty} C_{k}(1, \alpha_{s}(Q)) \mathcal{P} \exp\left\{\int_{Q}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{j}(\alpha_{s}(\mu'))\delta_{kj} + \frac{\beta}{g}\Delta_{kj}(\alpha_{s}(\mu'), \mu'/\mu^{*})\right]\right\}$$

with

$$C_{j}(1,\alpha_{s}(Q)) = \frac{2^{1+j+\gamma_{j}(\alpha_{s})/2}\Gamma\left(\frac{5}{2}+j+\gamma_{j}(\alpha_{s})/2\right)}{\Gamma(3/2)\Gamma\left(3+j+\gamma_{j}(\alpha_{s})/2\right)} c_{j}^{\overline{\mathsf{MS}},\mathsf{DIS}}(\alpha_{s})$$

- $\frac{2 \cdots \Gamma(\cdots)}{\Gamma(3/2)\Gamma(\cdots)}$ is result of resumming the conformal tower *j*
- $c_j^{\text{MS,DIS}}(\alpha_s)$ from [Zijlstra, v. Neerven '92, '94, v. Neerven and Vogt '00]
- Finally, evolution of conformal moments is given by \ldots \Rightarrow

Conformal Approach to DVCS Beyond NLO $\circ \circ \circ \circ \circ \circ \circ \bullet$

Results 0000000

Summary

NNLO DVCS (III)

$$\mu \frac{d}{d\mu} H_j(\cdots, \mu^2) = -\gamma_j(\alpha_s(\mu)) H_j(\cdots, \mu^2)$$
$$- \frac{\beta(\alpha_s(\mu))}{g(\mu)} \sum_{k=0}^{j-2} \eta^{j-k} \Delta_{jk} \left(\alpha_s(\mu), \frac{\mu}{\mu^*} \right) H_k(\cdots, \mu^2)$$

- Δ_{jk} unknown correction, starts at NNLO, and can be suppressed by choice of initial condition — neglected
- γ_i from [Vogt, Moch and Vermaseren '04]

Conformal Approach to DVCS Beyond NLO ${\scriptstyle \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bullet}$

Results 0000000 Summary

NNLO DVCS (III)

$$u \frac{d}{d\mu} H_j(\cdots, \mu^2) = -\gamma_j(\alpha_s(\mu)) H_j(\cdots, \mu^2)$$
$$- \frac{\beta(\alpha_s(\mu))}{g(\mu)} \sum_{k=0}^{j-2} \eta^{j-k} \Delta_{jk} \left(\alpha_s(\mu), \frac{\mu}{\mu^*} \right) H_k(\cdots, \mu^2)$$

- Δ_{jk} unknown correction, starts at NNLO, and can be suppressed by choice of initial condition — neglected
- γ_i from [Vogt, Moch and Vermaseren '04]
- We have used these expressions to
 - investigate size of NNLO corrections to non-singlet [Müller '05] and singlet [K.K., Müller, Passek-Kumerički and Schäfer '06] Compton form factors
 - perform fits to DVCS (and DIS) data and extract information about GPDs [K.K., Müller and Passek-Kumerički '07]

Conformal Approach to DVCS Beyond NLO

Results ••••••

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Summary

Results on NNLO DVCS

• We use simple Regge-inspired ansatz for GPDs

$$\mathbf{H}_{j}(\xi, \Delta^{2}, \mathcal{Q}_{0}^{2}) = \begin{pmatrix} N_{\Sigma}' F_{\Sigma}(\Delta^{2}) B(1+j-\alpha_{\Sigma}(\Delta^{2}), 8) \\ N_{G}' F_{G}(\Delta^{2}) B(1+j-\alpha_{G}(\Delta^{2}), 6) \end{pmatrix}$$
$$\alpha_{a}(\Delta^{2}) = \alpha_{a}(0) + 0.25\Delta^{2} \qquad F_{a}(\Delta^{2}) = \left(1 - \frac{\Delta^{2}}{m_{a}^{2}}\right)^{-3}$$

Conformal Approach to DVCS Beyond NLO

Results ••••••

Summary

Results on NNLO DVCS

• We use simple Regge-inspired ansatz for GPDs

$$\mathbf{H}_{j}(\xi, \Delta^{2}, \mathcal{Q}_{0}^{2}) = \begin{pmatrix} N_{\Sigma}' F_{\Sigma}(\Delta^{2}) \mathsf{B}(1+j-\alpha_{\Sigma}(\Delta^{2}), 8) \\ N_{G}' F_{G}(\Delta^{2}) \mathsf{B}(1+j-\alpha_{G}(\Delta^{2}), 6) \end{pmatrix}$$
$$\alpha_{a}(\Delta^{2}) = \alpha_{a}(0) + 0.25\Delta^{2} \qquad F_{a}(\Delta^{2}) = \left(1 - \frac{\Delta^{2}}{m_{a}^{2}}\right)^{-3}$$

• ... corresponding in forward case ($\Delta = 0$) to PDFs of form $\Sigma(x) = N'_{\Sigma} x^{-\alpha_{\Sigma}(0)} (1-x)^7$; $G(x) = N'_{G} x^{-\alpha_{G}(0)} (1-x)^5$

Conformal Approach to DVCS Beyond NLO

Results ••••••

Summary

Results on NNLO DVCS

• We use simple Regge-inspired ansatz for GPDs

$$\mathbf{H}_{j}(\xi, \Delta^{2}, \mathcal{Q}_{0}^{2}) = \begin{pmatrix} N_{\Sigma}' F_{\Sigma}(\Delta^{2}) \mathsf{B}(1+j-\alpha_{\Sigma}(\Delta^{2}), 8) \\ N_{G}' F_{G}(\Delta^{2}) \mathsf{B}(1+j-\alpha_{G}(\Delta^{2}), 6) \end{pmatrix}$$
$$\alpha_{a}(\Delta^{2}) = \alpha_{a}(0) + 0.25\Delta^{2} \qquad F_{a}(\Delta^{2}) = \left(1 - \frac{\Delta^{2}}{m_{a}^{2}}\right)^{-3}$$

- ... corresponding in forward case ($\Delta = 0$) to PDFs of form $\Sigma(x) = N'_{\Sigma} x^{-\alpha_{\Sigma}(0)} (1-x)^7$; $G(x) = N'_{G} x^{-\alpha_{G}(0)} (1-x)^5$
- for small ξ (small x) valence quarks less important

Conformal Approach to DVCS Beyond NLO

Results •••••• Summary

Results on NNLO DVCS

• We use simple Regge-inspired ansatz for GPDs

$$\mathbf{H}_{j}(\xi, \Delta^{2}, \mathcal{Q}_{0}^{2}) = \begin{pmatrix} N_{\Sigma}' F_{\Sigma}(\Delta^{2}) \mathsf{B}(1+j-\alpha_{\Sigma}(\Delta^{2}), 8) \\ N_{G}' F_{G}(\Delta^{2}) \mathsf{B}(1+j-\alpha_{G}(\Delta^{2}), 6) \end{pmatrix}$$
$$\alpha_{a}(\Delta^{2}) = \alpha_{a}(0) + 0.25\Delta^{2} \qquad F_{a}(\Delta^{2}) = \left(1 - \frac{\Delta^{2}}{m_{a}^{2}}\right)^{-3}$$

- ... corresponding in forward case ($\Delta = 0$) to PDFs of form $\Sigma(x) = N'_{\Sigma} x^{-\alpha_{\Sigma}(0)} (1-x)^7$; $G(x) = N'_{G} x^{-\alpha_{G}(0)} (1-x)^5$
- for small ξ (small x) valence quarks less important
- We calculate K-factors

$$\mathcal{K}^{P}_{abs} = \frac{\left|{}^{S}\mathcal{H}^{\mathsf{N}^{P}\mathsf{LO}}\right|}{\left|{}^{S}\mathcal{H}^{\mathsf{N}^{P-1}\mathsf{LO}}\right|}\,; \qquad \mathcal{K}^{P}_{arg} = \frac{\mathsf{arg}\left({}^{S}\mathcal{H}^{\mathsf{N}^{P}\mathsf{LO}}\right)}{\mathsf{arg}\left({}^{S}\mathcal{H}^{\mathsf{N}^{P-1}\mathsf{LO}}\right)}\,.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conformal Approach to DVCS Beyond NLO

Results

Summary

Size of Radiative Corrections - Modulus

- NLO: up to 40–70% $(\overline{\mathrm{MS}})$; up to 30–55% $(\overline{\mathrm{CS}})$ ["hard"]
- NNLO: 8–14% ("hard"); 1-4% ("soft")

 $[\overline{\mathrm{CS}}]$

Conformal Approach to DVCS Beyond NLO 00000000

Results ○O●○○○○ Summary

Scale Dependence

- NLO: even 100%
- NNLO: somewhat smaller, but acceptable only for larger ξ
 - ・ロト・西ト・ヨト・ヨー うへの

Conformal Approach to DVCS Beyond NLO

Results

Summary

Fast fitting routine

= 900

Conformal Approach to DVCS Beyond NLO

Results

Summary

Example of final fit result

孠▶ ≮臣▶ ≮臣▶ - 臣 - わへ0

Conformal Approach to DVCS Beyond NLO

Results

Summary

Parton probability density

 Fourier transform of GPD for η = 0 can be interpreted as probability density depending on x and transversal distance b [Burkardt '00, '02]

$$H(x,ec{b})=\int\!rac{d^2ec{\Delta}}{(2\pi)^2}\,e^{-iec{b}\cdotec{\Delta}}H(x,\eta=0,\Delta^2=-ec{\Delta}^2)\;,$$

• Average transversal distance :

$$\langle \vec{b}^2 \rangle(x, \mathcal{Q}^2) = \frac{\int d\vec{b} \, \vec{b}^2 H(x, \vec{b}, \mathcal{Q}^2)}{\int d\vec{b} \, H(x, \vec{b}, \mathcal{Q}^2)} = 4B(x, \mathcal{Q}^2),$$

Conformal Approach to DVCS Beyond NLO

Results

Summary

Three-dimensional image of a proton

Quarks:

Gluons:

sac

Conformal Approach to DVCS Beyond NLO

Results 0000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Summary

Summary

 Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.

Conformal Approach to DVCS Beyond NLO

Results 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
Conformal Approach to DVCS Beyond NLO

Results 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.

Conformal Approach to DVCS Beyond NLO

Results 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.

Conformal Approach to DVCS Beyond NLO

Results 0000000

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.
- Scale dependence is not so conclusive: large NNLO effects for $\xi \lesssim 10^{-3}$ signaling breakdown of naive perturbation series.

Conformal Approach to DVCS Beyond NLO

Results 0000000 Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.
- Scale dependence is not so conclusive: large NNLO effects for $\xi \lesssim 10^{-3}$ signaling breakdown of naive perturbation series.
- Fits to available DVCS and DIS data also work well and give access to transversal distribution of partons.

Conformal Approach to DVCS Beyond NLO

Results 0000000

Summary

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.
- Scale dependence is not so conclusive: large NNLO effects for $\xi \lesssim 10^{-3}$ signaling breakdown of naive perturbation series.
- Fits to available DVCS and DIS data also work well and give access to transversal distribution of partons.

The End

Appendix •000

Relation to distribution amplitudes

• In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

$$F^{q}(x,\eta,\Delta^{2}) = \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|\bar{q}(-z)\gamma^{+}q(z)|P_{1}\rangle\Big|_{z^{+}=0, z_{\perp}=0}$$

$$F^{g}(x,\eta,\Delta^{2}) = \frac{4}{P^{+}} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|G^{+\mu}_{a}(-z)G^{+\mu}_{a\mu}(z)|P_{1}\rangle\Big|_{...}$$

 $P = P_1 + P_2$; $\Delta = P_2 - P_1$; $\eta = -\frac{\Delta^+}{P^+}$ (skewedness)

Appendix 0000

Conformal algebra

• Conformal group restricted to light-cone ~ O(2, 1) $L_{+} = -iP_{+}$ $[L_{0}, L_{\mp}] = \mp L_{\mp}$ conf.spin j: $L_{-} = \frac{i}{2}K_{-}$ $[L_{-}, L_{+}] = -2L_{0}$ $[L^{2}, \mathbb{O}_{n,n+k}] =$ $L_{0} = \frac{i}{2}(D + M_{-+})$ $L^{2} = L_{0}^{2} - L_{0} + L_{-}L_{+}$

 $(D - \text{dilatations}, K_{-} - \text{special conformal transformation (SCT)})$

Size of Radiative Corrections - phase

• NLO: up to 24% $(\overline{\mathrm{MS}})$; up to 13% $(\overline{\mathrm{CS}})$

NNLO and "soft" NLO — less than 5%

["hard"]

э

(日)、

Appendix 0000

Scale Dependence - Modulus

(日)、

э

- NLO: even 100%
- NNLO: smaller (largest for "hard" gluons)