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Electromagnetic form factors
γ

∗
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• Dirac and Pauli form factors:

q(b⊥) ∼
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db⊥ e iq1·b⊥

F1,2(t = q2
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• GPD: Hq(x , 0, t = ∆2) =
∫

db⊥ e i∆·b⊥q(x , b⊥)
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Probing the proton with two photons

• Deeply virtual Compton scattering [Müller ’92, et al. ’94]
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P = P1 + P2 q = (q1 + q2)/2

Generalized Bjorken limit:

−q2 ' Q2/2 →∞

ξ =
−q2

2P · q
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• QCD: factorization of short- and long-distance physics
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Definition of GPDs

• In QCD GPDs are defined as [Müller ’92, et al. ’94, Ji, Radyushkin ’96]

F q(x , η,∆2) =
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Properties of GPDs

• Decomposing into helicity conserving and non-conserving part:

F a =
ū(P2)γ

+u(P1)

P+
Ha +

ū(P2)iσ
+νu(P1)∆ν

2MP+
E a a = q, g

• Forward limit (∆ → 0): ⇒ GPD → PDF

F q(x , 0, 0) = Hq(x , 0, 0) = θ(x)q(x)− θ(−x)q̄(−x)

• Sum rules: ∫ 1

−1
dx

{
Hq(x , η,∆2)
Eq(x , η,∆2)

=

{
F q

1 (∆2)
F q

2 (∆2)

• Possibility of flavour decomposition of proton spin

1

2

∫ 1

−1
dx x

[
Hq(x , η,∆2) + Eq(x , η,∆2)

]
= Jq(∆2) [Ji ’96]
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Relevance of GPDs for collider physics

W ±, H, SUSY, . . .

Hard parton core
Soft partons x<<0.01

• heavy particle production ⇒ collision is more central
⇒ larger probability for multiple parton collisions

• [Frankfurt, Strikman and Weiss ’04]

• No influence on total inclusive cross sections, but event
structure is sensitive to transversal parton distributions.

• Relevant for LHC?
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Deeply virtual Compton scattering (I)

• Measured in leptoproduction of a real photon:

γ∗

P1 P2

DVCS

γ
l

l

γ∗

P1 P2

F1,2(∆)

γ
l

l

Bethe-Heitler scatt.

• There is a background process but it can be used to our
advantage:

σ ∝ |TDVCS|2 + |TBH|2 + T ∗DVCSTBH + TDVCST ∗BH

• Using TBH as a referent “source” enables measurement of the
phase of TDVCS → proton “holography” [Belitsky and Müller ’02]
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Deeply virtual Compton scattering (II)

γ∗

P1 P2

DVCS

−q2

1
= Q2 q2

2
= 0

γ
P = P1 + P2 q = (q1 + q2)/2

∆ = P2 − P1

−q2 ' Q2/2 →∞

ξ =
−q2

2P · q
→ const

A(ξ,∆2,Q2) =
∑

i

∫
dx Ci (x , ξ,Q2/µ2) GPDi (x , η = ξ,∆2, µ2)

• Measurements at DESY, JLab, CERN (COMPASS)

• At large energies, flavour singlet GPDs dominate

• gluon contribution to Ci starts at NLO

• DIS experience at small x : gluons � sea quarks

• ⇒ need NNLO to stabilize perturbation series and
investigate convergence ⇒ conformal approach
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Operator Product Expansion

Jem(x)Jem(0) −→
∞∑

n=0

∞∑
k=0

(
1

x2

)2

xn+k+1
− Cn,kOn,k

k = 0 :

On,k ≡ (i∂+)k ψ̄ γ+(i
↔
D+)nψ

i∂+
M.E.→ −∆+

↔
D+≡

→
D+−

←
D+

• Cn,0 and γn of On,0 are well known from DIS up to NNLO.

• But Cn,k and γn,k are not so well known.

• γn,k 6= 0 ⇒ operators On,k mix under evolution.

• Choosing operator basis in which γn,k is diagonal would help.
But how to diagonalize unknown matrix?!

• (At least) to LO answer is: use conformal operators.
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Conformal operators

On,n+k = (i∂+)n+k ψ̄ γ+ C
3/2
n

( ↔
D+

∂+

)
ψ

• they have well-defined conformal spin j= n + 2

• massless QCD is conformally symmetric at the tree level
⇒ conformal spin is conserved

• mixing of operators with different n is forbidden by conformal
symmetry, while mixing of those with different n + k is
forbidden by Lorentz symmetry ⇒ On,n+k don’t mix at LO

• conformal symmetry broken at the loop level (renormalization
introduces mass scale, dimensional transmutation) ⇒

• running of the coupling constant ∂g/∂ lnµ ≡ β 6= 0
• anomalous dimensions of operators γjk = δjkγj + γND

jk

⇒ On,n+k start to mix at NLO
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Conformal Towers
sp

in
=

n
+

k
+

1

conformal spin j = n + 2

γn and Cn known from DIS

These mix at NLO

, in MS but not in CS scheme

• Diagonalize in artificial β = 0 theory by changing scheme

OCS = B−1OMS so that γCS
jk = δjkγk

• Cn,k = (−1)k (n+2)k
k!(2n+4)k

Cn,0 ⇒ summing complete tower
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β 6= 0 (I)

• In full QCD β 6= 0 and NLO diagonalization is spoiled:

γCS
jk = δjkγk +

β

g
∆jk

• However, there is also ambiguity in MS → CS rotation matrix:

B = B(β=0) +
β

g
δB

• By judicious choice of δB one can “push” mixing to NNLO
(CS scheme, [Melić et al.] ).

• But how to calculate rotation matrix B? This is problem
equivalent to calculation of γj ,k .



Introduction to GPDs Conformal Approach to DVCS Beyond NLO Results Summary

β 6= 0 (I)

• In full QCD β 6= 0 and NLO diagonalization is spoiled:

γCS
jk = δjkγk +

β

g
∆jk

• However, there is also ambiguity in MS → CS rotation matrix:

B = B(β=0) +
β

g
δB

• By judicious choice of δB one can “push” mixing to NNLO
(CS scheme, [Melić et al.] ).
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β 6= 0 (II)

• The B(β=0) is constrained by conformal Ward identities . . .

B
(β=0)NLO
jk = δjk−

αs

2π
θ(j > k)

γSCT, LO
jk

ajk

(ajk — known matrix)

[Müller ’93]

SCT ≡ special conformal transformation

• . . . and, as a consequence

MSγ
ND,(1)
jk =

[
γSCT, (0) − β0

b
g , γ

(0)

]
jk

ajk

• Final result:
n-loop DIS (diagonal) result + (n − 1)-loop SCT anomaly =

n-loop non-diagonal prediction
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NNLO DVCS (I)

• DVCS amplitude in terms of conformal moments:

SH(ξ,∆2,Q2) = 2
∞∑
j=0

ξ−j−1Cj(Q2/µ2, αs(µ)) Hj(ξ = η,∆2, µ2)

Hq
j (η, . . .) =

Γ(3/2)Γ(j+1)

2j+1Γ(j+3/2)

∫ 1

−1
dx ηj−1C

3/2
j (x/η)Hq(x , η, . . .)

• . . . analogous to Mellin moments in DIS: xn → C
3/2
n (x)

• Here, Wilson coefficients Cj read . . .
⇒
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NNLO DVCS (II)

Cj(Q
2/µ2,Q2/µ∗2, αs(µ)) =

∞∑
k=j

Ck(1, αs(Q)) P exp

{∫ µ

Q

dµ′

µ′[
γj(αs(µ

′))δkj +
β

g
∆kj(αs(µ

′), µ′/µ∗)

]}
with

Cj(1, αs(Q)) =
21+j+γj (αs)/2Γ

(
5
2 + j + γj(αs)/2

)
Γ(3/2)Γ

(
3 + j + γj(αs)/2

) cMS,DIS
j (αs)

• 2···Γ(··· )
Γ(3/2)Γ(··· ) is result of resumming the conformal tower j

• cMS,DIS
j (αs) from [Zijlstra, v. Neerven ‘92,‘94, v. Neerven and Vogt ’00]

• Finally, evolution of conformal moments is given by . . . ⇒
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NNLO DVCS (III)

µ
d

dµ
Hj(· · · , µ2) = −γj(αs(µ))Hj (· · · , µ2)

− β(αs(µ))

g(µ)

j−2∑
k=0

ηj−k∆jk

(
αs(µ),

µ

µ∗

)
Hk(· · · , µ2)

• ∆jk — unknown correction, starts at NNLO, and can be
suppressed by choice of initial condition — neglected

• γj from [Vogt, Moch and Vermaseren ’04]

• We have used these expressions to
1. investigate size of NNLO corrections to non-singlet [Müller ’05]

and singlet [K.K., Müller, Passek-Kumerički and Schäfer ’06]

Compton form factors
2. perform fits to DVCS (and DIS) data and extract information

about GPDs [K.K., Müller and Passek-Kumerički ’07]
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Results on NNLO DVCS

• We use simple Regge-inspired ansatz for GPDs . . .

Hj(ξ,∆
2,Q2

0) =

(
N ′

Σ FΣ(∆2) B
(
1 + j − αΣ(∆2), 8

)
N ′

G FG(∆2) B
(
1 + j − αG(∆2), 6

) )

αa(∆
2) = αa(0) + 0.25∆2 Fa(∆

2) =

(
1− ∆2

m2
a

)−3

• . . . corresponding in forward case (∆ = 0) to PDFs of form

Σ(x) = N ′
Σ x−αΣ(0) (1− x)7 ; G (x) = N ′

G x−αG(0) (1− x)5

• for small ξ (small x) valence quarks less important

• We calculate K -factors

KP
abs =

∣∣∣SHNPLO
∣∣∣∣∣∣SHNP−1LO
∣∣∣ ; KP

arg =
arg

(
SHNPLO

)
arg

(
SHNP−1LO

) .
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Size of Radiative Corrections - Modulus
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0.4
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1

P=2 (NNLO), CS
P=1    (NLO), CS
P=1    (NLO), MS

∆ = 0 K
P a
b
s
(Q

2
=

2.
5

G
eV

2
)

Thick lines:
“hard” gluon
NG = 0.4
αG (0)=αΣ(0)+0.1

Thin lines:
“soft” gluon
NG = 0.3
αG (0)=αΣ(0)

• NLO: up to 40–70% (MS); up to 30–55% (CS) [“hard”]

• NNLO: 8–14% (“hard”); 1-4% (“soft”) [CS]
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Scale Dependence

Same K -factors, but with H → dH/d lnQ2
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Thick lines:
“hard” gluon
NG = 0.4
αG (0)=αΣ(0)+0.1

Thin lines:
“soft” gluon
NG = 0.3
αG (0)=αΣ(0)

• NLO: even 100%

• NNLO: somewhat smaller, but acceptable only for larger ξ
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Fast fitting routine

• NΣ = 0.143, αΣ(0) = 1.10, mΣ = 1.26, NG = 0.549, αG (0) = 0.915, mG = 1.66, Q2
0 = 2.5 GeV2

• χ2/(number of degrees of freedom) = 54/64
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Example of final fit result
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Parton probability density
• Fourier transform of GPD for η = 0 can be interpreted as

probability density depending on x and transversal distance b
[Burkardt ’00, ’02]

H(x ,~b) =

∫
d2~∆

(2π)2
e−i~b·~∆H(x , η = 0,∆2 = −~∆2) ,

• Average transversal distance :

〈~b2〉(x ,Q2) =

∫
d~b~b2H(x ,~b,Q2)∫
d~b H(x ,~b,Q2)

= 4B(x ,Q2) ,

10
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,Q
2

=
4
G

eV
2
)

[G
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−

2
]

quarks

gluons

(at Q2 = 4 GeV2)

〈~b2〉gluon(ξ = 10−3) =

0.30+0.07
−0.04 fm2
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Three-dimensional image of a proton

Quarks: Gluons:
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Summary

• Generalized parton distributions offer unified description of the
proton structure. They are experimentally accessible via
DVCS.

• Conformal symmetry enables elegant approach to radiative
corrections to DVCS amplitude.

• NLO corrections can be sizable, and are strongly dependent
on the gluonic input.

• NNLO corrections are small to moderate, supporting
perturbative framework of DVCS.

• Scale dependence is not so conclusive: large NNLO effects for
ξ . 10−3 signaling breakdown of naive perturbation series.

• Fits to available DVCS and DIS data also work well and give
access to transversal distribution of partons.
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Appendix

Relation to distribution amplitudes

• In QCD GPDs are defined as [Müller ’92, et al. ’94, Ji, Radyushkin ’96]

F q(x , η,∆2) =

∫
dz−

2π
e ixP+z−〈P2|q̄(−z)γ+q(z)|P1〉

∣∣∣
z+=0, z⊥=0

F g (x , η,∆2) =
4

P+

∫
dz−

2π
e ixP+z−〈P2|G+µ

a (−z)G +
aµ (z)|P1〉

∣∣∣
...

x + η

2
P +

x − η

2
P +

1 + η

2
P +

1 − η

2
P +

0 < x < ηGPD “DA”

x + η

2
P +

−

x − η

2
P +

1 − η

2
P +1 + η

2
P +

P = P1 + P2 ; ∆ = P2 − P1 ; η = −∆+

P+
(skewedness)



Appendix

Conformal algebra

• Conformal group restricted to light-cone ∼ O(2, 1)
L+ = −iP+

L− =
i

2
K−

L0 =
i

2
(D + M−+)

[L0, L∓] = ∓L∓

[L−, L+] = −2L0

Casimir:

L2 = L2
0 − L0 + L−L+

conf.spin j :

[L2,On,n+k ] =

j(j − 1)On,k

(D — dilatations, K− — special conformal transformation (SCT))



Appendix

Size of Radiative Corrections - phase
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1.25

∆2
= 0

(c)

K
P a
rg

(Q
2

=
2.

5
G

eV
2
)

Thick lines:
“hard” gluon
NG = 0.4
αG (0)=αΣ(0)+0.1

Thin lines:
“soft” gluon
NG = 0.3
αG (0)=αΣ(0)

• NLO: up to 24% (MS); up to 13% (CS) [“hard”]

• NNLO and “soft” NLO — less than 5%



Appendix

Scale Dependence - Modulus
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Thin lines:
“soft” gluon
NG = 0.3
αG (0)=αΣ(0)

• NLO: even 100%

• NNLO: smaller (largest for “hard” gluons)
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