The $B \rightarrow K \eta^{\prime}$ Decay Puzzle

Krešimir Kumerički

Department of Physics, University of Zagreb

Collaboration with: J. O. Eeg (University of Oslo) and I. Picek (University of Zagreb)

```
[J.O. Eeg, K.K. and I. Picek, Phys. Lett. B363 (2003) 87]
```


Overview

- Introduction to B decays

Overview

- Introduction to B decays
- $\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\eta}^{\prime}$ decay - experimental data - motivation

Overview

- Introduction to B decays
- $\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\eta}^{\prime}$ decay - experimental data - motivation
- Singlet-penguin as an enhancement mechanism

Overview

- Introduction to B decays
- $\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\eta}^{\prime}$ decay - experimental data - motivation
- Singlet-penguin as an enhancement mechanism
- $\operatorname{SU}(3)_{\mathrm{F}}$ flavour symmetry approach

Overview

- Introduction to B decays
- $\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\eta}^{\prime}$ decay - experimental data - motivation
- Singlet-penguin as an enhancement mechanism
- $\operatorname{SU}(3)_{\mathrm{F}}$ flavour symmetry approach
- Perturbative, dynamical approach

Overview

- Introduction to B decays
- $\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\eta}^{\prime}$ decay - experimental data - motivation
- Singlet-penguin as an enhancement mechanism
- $\operatorname{SU}(3)_{\mathrm{F}}$ flavour symmetry approach
- Perturbative, dynamical approach
- Conclusions

Introduction to B decays

Two main reasons to study B physics:

- Reason 1: measuring Standard Model (SM) parameters

Introduction to B decays

Two main reasons to study B physics:

- Reason 1: measuring Standard Model (SM) parameters

$$
V_{\mathrm{CKM}}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Kobayashi-Maskawa
(4 independent parameters)

Introduction to B decays

Two main reasons to study B physics:

- Reason 1: measuring Standard Model (SM) parameters

$$
V_{\mathrm{CKM}}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
\boldsymbol{V}_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Kobayashi-Maskawa (4 independent parameters)

- Wolfenstein parametrization is more popular:

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

Introduction to B decays

Two main reasons to study B physics:

- Reason 1: measuring Standard Model (SM) parameters

$$
V_{\mathrm{CKM}}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Kobayashi-Maskawa (4 independent parameters)

- Wolfenstein parametrization is more popular:

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

- parameters involving $3^{\text {rd }}$ quark family still poorly known

Introduction to B decays (2)

- Reason 2: looking for New Physics beyond SM

Introduction to B decays (2)

- Reason 2: looking for New Physics beyond SM
- via new CP violation phases
(richer CP-viol. phenomenology than in \boldsymbol{K} physics)

Introduction to B decays (2)

- Reason 2: looking for New Physics beyond SM
- via new CP violation phases
(richer CP-viol. phenomenology than in \boldsymbol{K} physics)
- via quantum loops involving new particles

Introduction to B decays (2)

- Reason 2: looking for New Physics beyond SM
- via new CP violation phases (richer CP-viol. phenomenology than in \boldsymbol{K} physics)
- via quantum loops involving new particles
example:

Introduction to B decays (2)

- Reason 2: looking for New Physics beyond SM
- via new CP violation phases (richer CP-viol. phenomenology than in \boldsymbol{K} physics)
- via quantum loops involving new particles
example:

- precision loop calculations are less QCD-polluted because of the large energy scale $\sim m_{b}$ (asymptotic freedom)

Types of B decays

- leptonic

$\langle 0| J_{\text {hadr. }}^{\text {weak }}|\boldsymbol{B}\rangle \propto \boldsymbol{F}_{\boldsymbol{B}}$

Types of B decays

- leptonic

$\langle 0| J_{\text {hadr. }}^{\text {weak }}|B\rangle \propto F_{B}$
- semi-leptonic

$\langle D| J_{\text {hadr. }}^{\text {weak }}|B\rangle \propto F_{0}\left(q^{2}\right), F_{1}\left(q^{2}\right)$

Types of B decays (2)

- non-leptonic

$\langle\boldsymbol{D} \pi| \boldsymbol{J}_{\text {hadr. } 1}^{\text {weak }} \boldsymbol{J}_{\text {hadr. } 2}^{\text {weak }}|\boldsymbol{B}\rangle \rightarrow$ very complicated

Types of B decays (2)

- non-leptonic

$\langle D \pi| J_{\text {hadr. }}^{\text {weak }} \boldsymbol{J}_{\text {hadr. } 2}^{\text {weak }}|\boldsymbol{B}\rangle \rightarrow$ very complicated
- Factorization assumption:

$$
\approx\langle\pi| J_{\text {hadr. } 1}^{\text {weak }}|0\rangle\langle D| J_{\text {hadr. } 2}^{\text {weak }}|B\rangle \propto f_{\pi}, F_{0}\left(q^{2}\right), F_{1}\left(q^{2}\right)
$$

Types of B decays (2)

- non-leptonic

$\langle\boldsymbol{D} \pi| J_{\text {hadr. }}^{\text {weak }} J_{\text {hadr. } 2}^{\text {weak }}|B\rangle \rightarrow$ very complicated
- Factorization assumption:

$$
\approx\langle\pi| J_{\text {hadr. } 1}^{\text {weak }}|0\rangle\langle D| J_{\text {hadr. } 2}^{\text {weak }}|B\rangle \propto f_{\pi}, F_{0}\left(q^{2}\right), F_{1}\left(q^{2}\right)
$$

- explanation: fast pion \rightarrow "color transparency"

Types of B decays (2)

- non-leptonic

$\langle D \pi| J_{\text {hadr. }}^{\text {weak }} \boldsymbol{J}_{\text {hadr. } 2}^{\text {weak }}|\boldsymbol{B}\rangle \rightarrow$ very complicated
- Factorization assumption:

$$
\approx\langle\pi| J_{\text {hadr. } 1}^{\text {weak }}|0\rangle\langle D| J_{\text {hadr. } 2}^{\text {weak }}|B\rangle \propto f_{\pi}, F_{0}\left(q^{2}\right), F_{1}\left(q^{2}\right)
$$

- explanation: fast pion \rightarrow "color transparency"
- improved approaches (QCD factorization, ...)

Experimental data

- CLEO, Belle and BaBar collaborations see a lot of η 's in charmless (rare) hadronic B decays ...

$$
\begin{aligned}
\operatorname{Br}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \eta^{\prime}\right) & =(77 \pm 5) \cdot 10^{-6} \\
\operatorname{Br}\left(\boldsymbol{B}^{\mathbf{0}} \boldsymbol{\rightarrow} \boldsymbol{K}^{\mathbf{0}} \eta^{\prime}\right) & =(\mathbf{6 1} \pm \mathbf{6}) \cdot 10^{-6}
\end{aligned}
$$

- ... as compared to the π 's:

$$
\begin{aligned}
\operatorname{Br}\left(B^{+} \rightarrow K^{+} \pi^{0}\right) & =(13 \pm 1) \cdot 10^{-6} \\
\operatorname{Br}\left(B^{0} \rightarrow K^{0} \pi^{0}\right) & =(11 \pm 1) \cdot 10^{-6}
\end{aligned}
$$

Experimental data

- CLEO, Belle and BaBar collaborations see a lot of η 's in charmless (rare) hadronic B decays ...

$$
\begin{aligned}
\operatorname{Br}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \eta^{\prime}\right) & =(77 \pm 5) \cdot 10^{-6} \\
\operatorname{Br}\left(\boldsymbol{B}^{\mathbf{0}} \boldsymbol{\rightarrow} \boldsymbol{K}^{\mathbf{0}} \eta^{\prime}\right) & =(\mathbf{6 1} \pm \mathbf{6}) \cdot 10^{-6}
\end{aligned}
$$

- ... as compared to the π 's:

$$
\begin{aligned}
\operatorname{Br}\left(B^{+} \rightarrow K^{+} \pi^{0}\right) & =(13 \pm 1) \cdot 10^{-6} \\
\operatorname{Br}\left(B^{0} \rightarrow K^{0} \pi^{0}\right) & =(11 \pm 1) \cdot 10^{-6}
\end{aligned}
$$

- Why are η^{\prime} channels enhanced?
- Experience with η^{\prime} mass (U(1) problem: $m_{\eta^{\prime}} \gg m_{\pi}$) suggests: $\quad\left|\eta^{\prime}\right\rangle=\cdots+|g g\rangle+\cdots$
- Experience with η^{\prime} mass (U(1) problem: $m_{\eta^{\prime}} \gg m_{\pi}$) suggests: $\quad\left|\eta^{\prime}\right\rangle=\cdots+|g g\rangle+\cdots$

- Experience with η^{\prime} mass (U(1) problem: $m_{\eta^{\prime}} \gg m_{\pi}$) suggests: $\quad\left|\eta^{\prime}\right\rangle=\cdots+|g g\rangle+\cdots$

- Experience with η^{\prime} mass (U(1) problem: $m_{\eta^{\prime}} \gg m_{\pi}$) suggests: $\quad\left|\eta^{\prime}\right\rangle=\cdots+|g g\rangle+\cdots$

- 1. $\mathrm{SU}(3)_{\mathrm{F}}$ symmetry approach
- Experience with η^{\prime} mass (U(1) problem: $m_{\eta^{\prime}} \gg m_{\pi}$) suggests: $\quad\left|\eta^{\prime}\right\rangle=\cdots+|g g\rangle+\cdots$

- 1. $\mathrm{SU}(3)_{\mathrm{F}}$ symmetry approach
- 2. perturbative approach
- Experience with η^{\prime} mass (U(1) problem: $m_{\eta^{\prime}} \gg m_{\pi}$) suggests: $\quad\left|\eta^{\prime}\right\rangle=\cdots+|g g\rangle+\cdots$

- 1. $\mathrm{SU}(3)_{\mathrm{F}}$ symmetry approach \rightarrow SP part up to 50%
- 2. perturbative approach
- Experience with η^{\prime} mass (U(1) problem: $m_{\eta^{\prime}} \gg m_{\pi}$) suggests: $\quad\left|\eta^{\prime}\right\rangle=\cdots+|g g\rangle+\cdots$

- 1. $\mathrm{SU}(3)_{\mathrm{F}}$ symmetry approach \rightarrow SP part up to 50%
- 2. perturbative approach \rightarrow SP part negligible!

$\mathrm{SU}(3)_{\mathrm{F}}$ flavour symmetry approach

- decomposing amplitude on various flavour topologies:

$\mathrm{SU}(3)_{\mathrm{F}}$ flavour symmetry approach

- decomposing amplitude on various flavour topologies:

$\mathrm{SU}(3)_{\mathrm{F}}$ flavour symmetry approach

- decomposing amplitude on various flavour topologies:

$\mathrm{SU}(3)_{\mathrm{F}}$ flavour symmetry approach

- decomposing amplitude on various flavour topologies:

$\mathrm{SU}(3)_{\mathrm{F}}$ flavour symmetry approach

- decomposing amplitude on various flavour topologies:

$\mathrm{SU}(3)_{\mathrm{F}}$ flavour symmetry approach

- decomposing amplitude on various flavour topologies:

C-Tree (C)

Penguin (P)

- other topologies: tree (T), exchange (E), annihilation (A), penguin-annihilation (PA), singlet penguin (SP)

$\mathrm{SU}(3)_{\mathrm{F}}$ flavour symmetry approach

- decomposing amplitude on various flavour topologies:

C-Tree (C)

Penguin (P)

- other topologies: tree (T), exchange (E), annihilation (A), penguin-annihilation (PA), singlet penguin (SP)
- cannot calculate C, T, P, SP, ...

$\mathrm{SU}(3)_{\mathrm{F}}$ flavour symmetry approach

- decomposing amplitude on various flavour topologies:

C-Tree (C)

Penguin (P)

- other topologies: tree (T), exchange (E), annihilation (A), penguin-annihilation (PA), singlet penguin (SP)
- cannot calculate C, T, P, SP, ... but hope that they are invariant under flavour rotations $q_{i}=u \leftrightarrow d \leftrightarrow s$

$\mathrm{SU}(3)_{\mathrm{F}}$ flavour symmetry approach

- 7 free parameters - to be predictive one assumes that some can be neglected

$\mathrm{SU}(3)_{\mathrm{F}}$ flavour symmetry approach

- 7 free parameters - to be predictive one assumes that some can be neglected

C-Tree $C=$ B 0

suppressed
by small $V_{u b}$

$\mathrm{SU}(3)_{\mathrm{F}}$ flavour symmetry approach

- 7 free parameters - to be predictive one assumes that some can be neglected

$\mathrm{SU}(3)_{\mathrm{F}}$ flavour symmetry approach

- 7 free parameters - to be predictive one assumes that some can be neglected

> suppressed
> by small $V_{u b}$

Singlet penguin part

Singlet penguin part

- $S P=$

- [Chiang, Gronau, Rosner (2003)]: SP/P $\boldsymbol{P} \boldsymbol{0 . 4 - 0 . 8}$

Singlet penguin part

- $S P=$

- [Chiang, Gronau, Rosner (2003)]: SP/P $\boldsymbol{\sim} \boldsymbol{0 . 4 - 0 . 8}$
- Possible objections:
- $\mathrm{SU}(3)_{\mathrm{F}}$ symmetry broken

Singlet penguin part

- $S P=$

- [Chiang, Gronau, Rosner (2003)]: SP/P $\boldsymbol{P} \mathbf{0 . 4 - 0 . 8}$
- Possible objections:
- $\mathrm{SU}(3)_{\mathrm{F}}$ symmetry broken
- $\eta-\eta^{\prime}$ mixing implementation

Singlet penguin part

- $S P=$

- [Chiang, Gronau, Rosner (2003)]: SP/P $\approx \mathbf{0 . 4 - 0 . 8}$
- Possible objections:
- $\mathrm{SU}(3)_{\mathrm{F}}$ symmetry broken
- $\eta-\eta^{\prime}$ mixing implementation
- Hybrid method (symmetry + quark dynamics), overcomplete basis: more flavour topologies than true $\mathrm{SU}(3)_{\mathrm{F}}$ invariants

Alternative flavour symmetry approaches

- Comparison of different $\eta-\eta^{\prime}$ mixing implementations (single angle, two angles [Feldman, Kroll, Stech]) \longrightarrow results practicaly unchanged

Alternative flavour symmetry approaches

- Comparison of different $\eta-\eta^{\prime}$ mixing implementations (single angle, two angles [Feldman, Kroll, Stech]) \longrightarrow results practicaly unchanged
- "Pure" SU(3) F symmetry approach (generalization of [Savage and Wise (1989)])

$$
\begin{aligned}
H_{\mathrm{eff}} & =a B_{k} H(3)^{k} P_{i}^{j} P_{j}^{i}+b B_{i} H(3)^{k} P_{k}^{j} P_{j}^{i}+c B_{i} H(\overline{6})_{k}^{i j} P_{j}^{m} P_{m}^{k} \\
& +d B_{i} H(15)_{k}^{i j} P_{j}^{m} P_{m}^{k}+e B_{i} H(15)_{m}^{j k} P_{k}^{m} P_{j}^{i}+\tilde{f} B_{i} H(3)^{k} P_{k}^{i} \eta_{1} \\
& +\tilde{g} B_{i} H(\overline{6})_{k}^{i j} P_{j}^{k} \eta_{1}+\tilde{h} B_{i} H(15)_{k}^{i j} P_{j}^{k} \eta_{1}+\tilde{s} B_{k} H(3)^{k} \eta_{1} \eta_{1}
\end{aligned}
$$

Alternative flavour symmetry approaches

- Comparison of different $\eta-\eta^{\prime}$ mixing implementations (single angle, two angles [Feldman, Kroll, Stech]) \longrightarrow results practicaly unchanged
- "Pure" $\operatorname{SU}(3)_{\mathrm{F}}$ symmetry approach (generalization of [Savage and Wise (1989)])

$$
\begin{aligned}
H_{\mathrm{eff}} & =a B_{k} H(3)^{k} P_{i}^{j} P_{j}^{i}+b B_{i} H(3)^{k} P_{k}^{j} P_{j}^{i}+c B_{i} H(\overline{6})_{k}^{i j} P_{j}^{m} P_{m}^{k} \\
& +d B_{i} H(15)_{k}^{i j} P_{j}^{m} P_{m}^{k}+e B_{i} H(15)_{m}^{j k} P_{k}^{m} P_{j}^{i}+\tilde{f} B_{i} H(3)^{k} P_{k}^{i} \eta_{1} \\
& +\tilde{g} B_{i} H(\overline{6})_{k}^{i j} P_{j}^{k} \eta_{1}+\tilde{h} B_{i} H(15)_{k}^{i j} P_{j}^{k} \eta_{1}+\tilde{s} B_{k} H(3)^{k} \eta_{1} \eta_{1}
\end{aligned}
$$

- we get $S P / P=0.31-0.36$

Alternative flavour symmetry approaches

- Comparison of different $\eta-\eta^{\prime}$ mixing implementations (single angle, two angles [Feldman, Kroll, Stech])
\longrightarrow results practicaly unchanged
- "Pure" SU(3) $)_{\text {s symmetry approach (generalization of }}$ [Savage and Wise (1989)])

$$
\begin{aligned}
H_{\mathrm{eff}} & =a B_{k} H(3)^{k} P_{i}^{j} P_{j}^{i}+b B_{i} H(3)^{k} P_{k}^{j} P_{j}^{i}+c B_{i} H(\overline{6})_{k}^{i j} P_{j}^{m} P_{m}^{k} \\
& +d B_{i} H(15)_{k}^{i j} P_{j}^{m} P_{m}^{k}+e B_{i} H(15)_{m}^{j k} P_{k}^{m} P_{j}^{i}+\tilde{f} B_{i} H(3)^{k} P_{k}^{i} \eta_{1} \\
& +\tilde{g} B_{i} H(\overline{6})_{k}^{i j} P_{j}^{k} \eta_{1}+\tilde{h} B_{i} H(15)_{k}^{i j} P_{j}^{k} \eta_{1}+\tilde{s} B_{k} H(3)^{k} \eta_{1} \eta_{1}
\end{aligned}
$$

- we get $S P / P=0.31-0.36$
- [Eu, He, Hsiao (2003)] $S P / P \approx 0.9$

Perturbative (dynamical) analysis

Perturbative (dynamical) analysis

- [Atwood and Soni (1997)]
- [Halperin and Zhitnitsky (1997)]
- [Kagan and Petrov (1997)]
- [Hou and Tseng (1998)]
- [Datta, He and Pakvasa (1998)]
- [Du, Kim and Yang (1998)]

- [Ahmady, Kou and Sugamoto (1998)]
- [Ali, Chay, Greub and Ko (1998)]
- [Kou and Sanda (2002)]
- [Xiao, Chao and Li (2002)]
- [Beneke and Neubert (2002)]
- [Fritzsch and Zhou (2003)]

Generic features

- $b \rightarrow s g g$ transition described by either

Generic features

- $b \rightarrow s g g$ transition described by either

$$
\text { - } H_{\mathrm{eff}}^{\mathrm{ew}}=\frac{G_{F}}{\sqrt{2}} \sum C_{i} O_{i} \quad O_{1}=(\bar{u} b)_{\mathrm{V}-\mathrm{A}}(\bar{s} u)_{\mathrm{V}-\mathrm{A}}, \cdots
$$

Generic features

- $b \rightarrow s g g$ transition described by either

$$
\begin{array}{ll}
\text { - } \boldsymbol{H}_{\mathrm{eff}}^{\mathrm{ew}}=\frac{\boldsymbol{G}_{\boldsymbol{F}}}{\sqrt{2}} \sum \boldsymbol{C}_{\boldsymbol{i}} \boldsymbol{O}_{\boldsymbol{i}} & O_{\mathbf{1}}=(\overline{\boldsymbol{u}} \boldsymbol{b})_{\mathrm{V}-\mathrm{A}}(\overline{\boldsymbol{s}} \boldsymbol{u})_{\mathrm{V}-\mathrm{A}}, \cdots \\
\text { - or } \quad \boldsymbol{H}_{\mathrm{eff}}(\boldsymbol{b} \rightarrow \boldsymbol{s g} \boldsymbol{g}) & {[\text { Simma and Wyler (1990)] }}
\end{array}
$$

Generic features

- $b \rightarrow s g g$ transition described by either

$$
\begin{array}{ll}
\text { - } \boldsymbol{H}_{\mathrm{eff}}^{\mathrm{ew}}=\frac{\boldsymbol{G}_{F}}{\sqrt{2}} \sum C_{i} O_{i} & O_{1}=(\bar{u} b)_{V-A}(\bar{s} \boldsymbol{u})_{\mathrm{V}-\mathrm{A}}, \cdots \\
\text { - or } \quad \boldsymbol{H}_{\mathrm{eff}}(\boldsymbol{b} \rightarrow \boldsymbol{s g g}) & \text { [Simma and Wyler (1990)] }
\end{array}
$$

- $g g \eta^{\prime}$ vertex described by

$$
\left\langle\eta^{\prime}\right| \frac{\alpha_{\mathrm{s}}}{4 \pi} G_{\mu \nu} \tilde{G}^{\mu \nu}|0\rangle=f_{\eta^{\prime}} m_{\eta^{\prime}}^{2}
$$

Generic features

- $b \rightarrow s g g$ transition described by either

$$
\begin{array}{ll}
\text { - } \boldsymbol{H}_{\mathrm{eff}}^{\mathrm{ew}}=\frac{\boldsymbol{G}_{\boldsymbol{F}}}{\sqrt{2}} \sum \boldsymbol{C}_{\boldsymbol{i}} \boldsymbol{O}_{\boldsymbol{i}} & O_{\mathbf{1}}=(\overline{\boldsymbol{u}} \boldsymbol{b})_{\mathrm{V}-\mathrm{A}}(\overline{\boldsymbol{s}} \boldsymbol{u})_{\mathrm{V}-\mathrm{A}}, \cdots \\
\text { - or } \quad \boldsymbol{H}_{\mathrm{eff}}(\boldsymbol{b} \rightarrow \boldsymbol{s g} \boldsymbol{g}) & {[\text { Simma and Wyler (1990)] }}
\end{array}
$$

- $g g \eta^{\prime}$ vertex described by

$$
\left\langle\eta^{\prime}\right| \frac{\alpha_{\mathrm{s}}}{4 \pi} G_{\mu \nu} \tilde{G}^{\mu \nu}|0\rangle=f_{\eta^{\prime}} m_{\eta^{\prime}}^{2}
$$

- But:

Generic features

- $b \rightarrow s g g$ transition described by either
$\begin{array}{ll}\text { - } \boldsymbol{H}_{\text {eff }}^{\text {ew }}=\frac{G_{F}}{\sqrt{2}} \sum \boldsymbol{C}_{\boldsymbol{i}} O_{i} & O_{1}=(\bar{u} \boldsymbol{b})_{V-A}(\bar{s} \boldsymbol{u})_{V-A}, \cdots \\ \text { - or } \boldsymbol{H}_{\text {eff }}(\boldsymbol{b} \rightarrow \boldsymbol{s g} \boldsymbol{g}) & \text { [Simma and Wyler (1990)] }\end{array}$
- $g g \eta^{\prime}$ vertex described by

$$
\left\langle\eta^{\prime}\right| \frac{\alpha_{\mathrm{s}}}{4 \pi} G_{\mu \nu} \tilde{G}^{\mu \nu}|0\rangle=f_{\eta^{\prime}} m_{\eta^{\prime}}^{2}
$$

- But:
- This is appropriate for on-shell/soft gluons

Generic features

- $b \rightarrow s g g$ transition described by either

$$
\begin{array}{ll}
\text { - } \boldsymbol{H}_{\mathrm{eff}}^{\mathrm{ew}}=\frac{\boldsymbol{G}_{F}}{\sqrt{2}} \sum \boldsymbol{C}_{\boldsymbol{i}} O_{i} & O_{1}=(\overline{\boldsymbol{u}} \boldsymbol{b})_{\mathrm{V}-\mathrm{A}}(\overline{\boldsymbol{s}} \boldsymbol{u})_{\mathrm{V}-\mathrm{A}}, \cdots \\
\text { o or } \quad \boldsymbol{H}_{\mathrm{eff}}(\boldsymbol{b} \rightarrow \boldsymbol{s g} \boldsymbol{g}) & \text { [Simma and Wyler (1990)] }
\end{array}
$$

- $g g \eta^{\prime}$ vertex described by

$$
\left\langle\eta^{\prime}\right| \frac{\alpha_{\mathrm{s}}}{4 \pi} G_{\mu \nu} \tilde{G}^{\mu \nu}|0\rangle=f_{\eta^{\prime}} m_{\eta^{\prime}}^{2}
$$

- But:
- This is appropriate for on-shell/soft gluons
- $S P \propto\left(C_{2}+\frac{C_{1}}{N_{C}}\right)=a_{2} \simeq 0.2$

Generic features

- $b \rightarrow s g g$ transition described by either

> - $H_{\mathrm{eff}}^{\mathrm{ew}}=\frac{G_{F}}{\sqrt{2}} \sum C_{i} O_{i}$
> $O_{1}=(\bar{u} b)_{V-A}(\bar{s} u)_{V-A}, \cdots$
> - or $H_{\text {eff }}(b \rightarrow s g g)$
> [Simma and Wyler (1990)]

- $g g \eta^{\prime}$ vertex described by

$$
\left\langle\eta^{\prime}\right| \frac{\alpha_{\mathrm{s}}}{4 \pi} G_{\mu \nu} \tilde{G}^{\mu \nu}|0\rangle=f_{\eta^{\prime}} m_{\eta^{\prime}}^{2}
$$

- But:
- This is appropriate for on-shell/soft gluons
- $S P \propto\left(C_{2}+\frac{C_{1}}{N_{C}}\right)=a_{2} \simeq 0.2 \Rightarrow S P \ll P, \mathcal{A}_{\text {exp }}$.

Comparison of two approaches I

Comparison of two approaches I

Comparison of two approaches I

What about hard off-shell gluon contribution? Can it explain the discrepancy?

Comparison of two approaches I

What about hard off-shell gluon contribution? Can it explain the discrepancy?

$b \rightarrow s g^{*} g^{*}$ amplitude

- [Simma and Wyler (1990)]: small external momenta $p_{b}, p_{s}, p_{g} \ll m_{W}$

$b \longrightarrow s g^{*} g^{*}$ amplitude

- [Simma and Wyler (1990)]: small external momenta $p_{b}, p_{s}, p_{g} \ll m_{W}$
- This work: $p_{b}, p_{s} \rightarrow 0$, but general p_{g}

$b \rightarrow s g^{*} g^{*}$ amplitude

- [Simma and Wyler (1990)]: small external momenta $p_{b}, p_{s}, p_{g} \ll m_{W}$
- This work: $p_{b}, p_{s} \rightarrow 0$, but general p_{g}
- Building blocks:

$b \rightarrow s g^{*} g^{*}$ (self-energy)

W, ϕ

$$
\begin{gathered}
\boldsymbol{\Sigma}(\boldsymbol{p})=-M_{W}^{2} \not p L-2 M_{W}^{2}\left(1+\frac{m_{i}^{2}}{2 M_{W}^{2}}\right) \not p L \int_{0}^{1} \mathrm{~d} x(1-x) \ln \frac{D}{\mu_{*}^{2}} \\
-\int_{0}^{1} \mathrm{~d} x\left[(1-x) m_{b} m_{s} \not p R-m_{i}^{2}\left(m_{b} R+m_{s} L\right)\right] \ln \frac{D}{\mu_{*}^{2}} \\
\ln \mu_{*}^{2}=\frac{1}{\epsilon}-\gamma_{E}+\ln 4 \pi \mu^{2}
\end{gathered}
$$

$b \rightarrow s g^{*} g^{*}$ (Triangle)

$$
\begin{gathered}
\boldsymbol{\Gamma}^{\mu}(\mathbf{0}, \boldsymbol{p},-\boldsymbol{p})=\frac{4 M_{W}^{2}}{m_{i}^{2}-M_{W}^{2}}\left(1+\frac{m_{i}^{2}}{2 M_{W}^{2}}\right)\left(p^{2} g^{\mu \nu}-p^{\mu} p^{\nu}\right) \gamma_{\nu} L \int_{0}^{1} \mathrm{~d} x x(1-x) \ln \frac{D}{C} \\
+M_{W}^{2} \gamma^{\mu} L+2 M_{W}^{2}\left(1+\frac{m_{i}^{2}}{2 M_{W}^{2}}\right) \gamma^{\mu} L \int_{0}^{1} \mathrm{~d} x(1-x) \ln \frac{D}{\mu_{*}^{2}} \\
D=x m_{i}^{2}+(1-x) M_{W}^{2}-x(1-x) p^{2} \\
C=m_{i}^{2}-x(1-x) p^{2}
\end{gathered}
$$

$b \rightarrow s g^{*} g^{*}(\mathrm{Box})$

$$
\begin{aligned}
& I^{\mu \nu}(0,0,-p, p)=\frac{2 M_{W}^{2}}{m_{i}^{2}-M_{W}^{2}}\left(1-\frac{m_{i}^{2}}{2 M_{W}^{2}}\right)\left(-i \epsilon^{\mu \nu \rho \sigma} p_{\sigma} \gamma_{\rho} L\right) \times \\
& \quad \times \int_{0}^{1} \mathrm{~d} x(1-x)\left\{(3 x-1) \mathbb{Y}_{1}+\left[x^{2}(1-x) p^{2}+(x+1) m_{i}^{2}\right] \mathbb{Y}_{2}\right\} \\
& +\frac{2 M_{W}^{2}}{m_{i}^{2}-M_{W}^{2}}\left(1+\frac{m_{i}^{2}}{2 M_{W}^{2}}\right) \int_{0}^{1} \mathrm{~d} x(1-x)\left\{\left[-(x+1) p g^{\mu \nu}-(x-1)\left(p^{\mu} \gamma^{\nu}+p^{\nu} \gamma^{\mu}\right)\right] \mathbb{Y}_{1}\right. \\
& \quad+\left(x^{2}(1-x)\left[-\left(p^{\mu} \gamma^{\nu}+p^{\nu} \gamma^{\mu}\right) p^{2}+p\left(4 p^{\mu} p^{\nu}-g^{\mu \nu} p^{2}\right)\right]\right. \\
& \left.\left.\quad+\left[-(x+1) \not p g^{\mu \nu}-(x-1)\left(p^{\mu} \gamma^{\nu}+p^{\nu} \gamma^{\mu}\right)\right] m_{i}^{2}\right) \mathbb{Y}_{2}\right\} L
\end{aligned}
$$

$\mathbb{Y}_{1,2}=$ complicated functions of $x, m_{i}^{2}, M_{W}^{2}, p^{2}$

$b \rightarrow s g^{*} g^{*}($ Complete $)$

$$
\begin{aligned}
\mathcal{A}= & \mathrm{i} \frac{\alpha_{s}}{\pi} \frac{G_{F}}{\sqrt{2}} \bar{s}(0) t^{b} t^{a} \sum_{i} \lambda_{i} T_{i \mu \nu} b(0) \epsilon_{a}^{\mu}(-p) \epsilon_{b}^{\nu}(p)+(\text { crossed }), \\
T_{i}^{\mu \nu}= & T_{i \mathrm{Box}}^{\mu \nu}+T_{i \text { Triangle }}^{\mu \nu}+T_{i \text { Self-energy }}^{\mu \nu} . \\
& T_{i}^{\mu \nu}=\left(-i \epsilon^{\mu \nu \rho \sigma} p_{\sigma} \gamma_{\rho} L\right) A_{i}+(\mu-\nu \text { symmetric part }) \\
A_{i}= & -\frac{8 M_{-}^{2}}{m_{i}^{2}-M_{W}^{2}}\left(1+\frac{m_{2}^{2}}{2 M_{W}^{2}}\right) \int_{0}^{1} \mathrm{~d} x x(1-x) \ln \frac{D}{C} \\
& +\frac{2 M_{W}^{2}}{m_{i}^{2}-M_{W}^{2}}\left(1-\frac{m_{i}^{2}}{2 M_{W}^{2}}\right) \int_{0}^{1} \mathrm{~d} x(1-x)\left\{(3 x-1) \mathbb{Y}_{1}+\left[x^{2}(1-x) p^{2}+(x+1) m_{i}^{2}\right] \mathbb{Y}_{2}\right\}
\end{aligned}
$$

$\eta^{\prime} g^{*} g^{*}$ form-factor I

$\eta^{\prime} g^{*} g^{*}$ form-factor I

- $g^{*} g^{*} \eta^{\prime}$ form-factor $\boldsymbol{F}_{\eta^{\prime} g^{*} g^{*}}$ poorly known

$\eta^{\prime} g^{*} g^{*}$ form-factor I

- $g^{*} g^{*} \eta^{\prime}$ form-factor $\boldsymbol{F}_{\eta^{\prime} g^{*} g^{*}}$ poorly known \rightarrow recent improvements via perturbative QCD:
- [Muta and Yang (2000)]
- [Ali and Parkhomenko (2002,2003)]
- [Kroll and Passek-Kumericki (2003)]

$\eta^{\prime} g^{*} g^{*}$ form-factor I

- $g^{*} g^{*} \eta^{\prime}$ form-factor $\boldsymbol{F}_{\eta^{\prime} g^{*} g^{*}}$ poorly known \rightarrow recent improvements via perturbative QCD:
- [Muta and Yang (2000)]
- [Ali and Parkhomenko (2002,2003)]
- [Kroll and Passek-Kumericki (2003)]
- $\boldsymbol{F}_{\boldsymbol{\eta}^{\prime} g^{*} g^{*}}$ defined via $\boldsymbol{\eta}^{\prime} \rightarrow \boldsymbol{g}^{*}\left(\boldsymbol{k}_{1}\right) \boldsymbol{g}^{*}\left(\boldsymbol{k}_{2}\right)$ amplitude:

$$
\begin{gathered}
N_{\mu \nu}^{a b}\left(\bar{Q}^{2}, \omega\right)=-i F_{\eta^{\prime} g^{*} g^{*}}\left(\bar{Q}^{2}, \omega\right) \epsilon_{\mu \nu k_{1} k_{2}} \delta^{a b}, \\
\bar{Q}^{2}=-\frac{k_{1}^{2}+k_{2}^{2}}{2} \quad \omega=\frac{k_{1}^{2}-k_{2}^{2}}{k_{1}^{2}+k_{2}^{2}}
\end{gathered}
$$

$\eta^{\prime} g^{*} g^{*}$ form-factor II

- For $\bar{Q}^{2} \gtrsim m_{b}^{2}$

$$
\begin{gathered}
F_{\eta^{\prime} g^{*} g^{*}}\left(\bar{Q}^{2}, 0\right)=4 \pi \alpha_{s}\left(\bar{Q}^{2}\right) \frac{f_{\eta^{\prime}}^{1}}{\sqrt{3} \bar{Q}^{2}}(1-\underbrace{\frac{1}{12} B_{2}^{g}\left(\bar{Q}^{2}\right)}_{\left|\eta^{\prime}\right\rangle=|g g\rangle}) \\
f_{\eta^{\prime}}^{1} \approx 1.15 \sqrt{2} f_{\pi}
\end{gathered}
$$

$\eta^{\prime} g^{*} g^{*}$ form-factor II

- For $\quad \bar{Q}^{2} \gtrsim m_{b}^{2}$

$$
\begin{gathered}
F_{\eta^{\prime} g^{*} g^{*}}\left(\bar{Q}^{2}, 0\right)=4 \pi \alpha_{s}\left(\bar{Q}^{2}\right) \frac{f_{\eta^{\prime}}^{1}}{\sqrt{3} \bar{Q}^{2}}(1-\underbrace{\frac{1}{12} B_{2}^{g}\left(\bar{Q}^{2}\right)}_{\left|\eta^{\prime}\right\rangle=|g g\rangle}) \\
f_{\eta^{\prime}}^{1} \approx 1.15 \sqrt{2} f_{\pi}
\end{gathered}
$$

- Double suppression of $F_{\eta^{\prime} g^{*} g^{*}}$:

$$
\left.\begin{array}{c}
1 / \bar{Q}^{2} \\
\alpha_{s}\left(\bar{Q}^{2}\right) \text { running }
\end{array}\right\} \quad \text { for } \bar{Q}^{2} \gg
$$

Gluing two pieces together

- Combining amplitudes for $b \rightarrow s g^{*} g^{*}$ and $g^{*} g^{*} \rightarrow \eta^{\prime}$

Gluing two pieces together

- Combining amplitudes for $b \rightarrow s g^{*} g^{*}$ and $g^{*} g^{*} \rightarrow \eta^{\prime}$

$$
\begin{aligned}
\mathcal{A}\left(b \rightarrow s \eta^{\prime}\right)= & \frac{G_{F}}{8 \sqrt{2} \pi^{3}}\left(\phi_{\eta^{\prime}} \bar{s} \not P_{\eta^{\prime}} L b\right) \sum_{i=u, c, t} \lambda_{i} \\
& \times \int_{\mu^{2} \sim m_{b}^{2}}^{M_{W}^{2}} d Q^{2} \alpha_{s}\left(Q^{2}\right) F_{\eta^{\prime} g^{*} g^{*}}\left(Q^{2}\right) A_{i}\left(-Q^{2}\right)
\end{aligned}
$$

Gluing two pieces together

- Combining amplitudes for $b \rightarrow s g^{*} g^{*}$ and $g^{*} g^{*} \rightarrow \eta^{\prime}$

$$
\begin{aligned}
\mathcal{A}\left(b \rightarrow s \eta^{\prime}\right)= & \frac{G_{F}}{8 \sqrt{2} \pi^{3}}\left(\phi_{\eta^{\prime}} \bar{s} \not P_{\eta^{\prime}} L b\right) \sum_{i=u, c, t} \lambda_{i} \\
& \times \int_{\mu^{2} \sim m_{b}^{2}}^{M_{W}^{2}} d Q^{2} \alpha_{s}\left(Q^{2}\right) F_{\eta^{\prime} g^{*} g^{*}}\left(Q^{2}\right) A_{i}\left(-Q^{2}\right)
\end{aligned}
$$

- $\mathcal{A}\left(b \rightarrow s \eta^{\prime}\right) \rightarrow \mathcal{A}\left(B \rightarrow K \eta^{\prime}\right)$ via factorization

IR cut-off dependence

Comparison of two approaches II

Comparison of two approaches II

Comparison of two approaches II

- (One must add SD (blue) on top of LD (gray-blue) and than compare with $\mathrm{SU}(3)$ (red).)
- Discrepancy smaller but still exists!

Conclusions

- Singlet penguin gluonic mechanism has significant but not dominant role in $\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\eta}^{\prime}$ amplitude

Conclusions

- Singlet penguin gluonic mechanism has significant but not dominant role in $\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\eta}^{\prime}$ amplitude
- Maybe "significant" \rightarrow "detectable"

Conclusions

- Singlet penguin gluonic mechanism has significant but not dominant role in $\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\eta}^{\prime}$ amplitude
- Maybe "significant" \rightarrow "detectable"
- No new physics is needed, but better understanding of the discrepancy between two described approaches would be welcome

Conclusions

- Singlet penguin gluonic mechanism has significant but not dominant role in $\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\eta}^{\prime}$ amplitude
- Maybe "significant" \rightarrow "detectable"
- No new physics is needed, but better understanding of the discrepancy between two described approaches would be welcome

The End

F1-F2 interplay

F1-F2 interplay

F1-F2 interplay

- $x \ll 1 \Rightarrow\left(F_{1} \sim \ln x\right) \gg\left(F_{2} \sim x^{2} \ln x\right)$

F1-F2 interplay

- ${ }^{2}$ 良 $\sim F_{1}(x)\left(p^{2} \gamma^{\mu}-\not p p^{\mu}\right) L-F_{2}(x) i \sigma_{\mu \nu} q^{\nu} m_{b} R$

- $x \ll 1 \Rightarrow\left(F_{1} \sim \ln x\right) \gg\left(F_{2} \sim x^{2} \ln x\right)$
- F_{1} terms cancel for on-shell or soft gluons (Ward identities, low-energy theorem [Low (1958)]) \Rightarrow suppression

F1-F2 interplay

- . \% $\sim F_{1}(x)\left(p^{2} \gamma^{\mu}-\not p p^{\mu}\right) L-F_{2}(x) i \sigma_{\mu \nu} q^{\nu} m_{b} R$

- $x \ll 1 \Rightarrow\left(F_{1} \sim \ln x\right) \gg\left(F_{2} \sim x^{2} \ln x\right)$
- F_{1} terms cancel for on-shell or soft gluons (Ward identities, low-energy theorem [Low (1958)]) \Rightarrow suppression
- but not for hard off-shell gluons ([witten (1977)])!

Hiperindex

- Overview
- Introduction to \boldsymbol{B} physics
- Introduction to \boldsymbol{B} physics (2)
- Types of \boldsymbol{B} decays
- Types of \boldsymbol{B} decays (2)
- Experiments
- Singlet penguin
- $\mathrm{SU}(3)_{\mathrm{F}}$ symmetry approach
- penguin interference
- SP in $\mathrm{SU}(3)_{\mathrm{F}}$ approach
- $g^{*} g^{*} \eta^{\prime}$ form factor
- $g^{*} g^{*} \eta^{\prime}$ form factor 2
- Gluing two pieces
- IR cut-off dependence
- SD - SU(3) ${ }_{\text {F }}$ comparison II
- Conclusions
- A1: F1-F2 interplay
- Alternative $\operatorname{SU}(3)_{\mathrm{F}}$ approaches
- References
- SD - general features
- $\mathrm{SD}-\mathrm{SU}(3)_{\mathrm{F}}$ comparison
- $b \rightarrow s g^{*} g^{*}$ intro
- $b \rightarrow s g^{*} g^{*}$ - self
- $b \rightarrow s g^{*} g^{*}$ - triangle
- $b \rightarrow s g^{*} g^{*}$ - box
- $b \rightarrow s g^{*} g^{*}$ - complete

