Applying Heavy-Light Chiral Quark Model to Rare *B* **Decays**

Krešimir Kumerički

Department of Physics, University of Zagreb

Collaboration with:

Jan Olav Eeg (University of Oslo), Svjetlana Fajfer, Anita Prapotnik Brdnik (University of Ljubljana) Ivica Picek (University of Zagreb)

Introduction to B decays

- Introduction to B decays
- Heavy-Light Chiral Quark Model

- Introduction to B decays
- Heavy-Light Chiral Quark Model
- Application: Isgur-Wise function

- Introduction to B decays
- Heavy-Light Chiral Quark Model
- Application: Isgur-Wise function
- Application: $B_{d(s)} \rightarrow D_{s(d)} \bar{D}_{s(d)}$

- Introduction to B decays
- Heavy-Light Chiral Quark Model
- Application: Isgur-Wise function
- Application: $B_{d(s)} \rightarrow D_{s(d)} \bar{D}_{s(d)}$
- Application: $B \to K \eta'$

- Introduction to B decays
- Heavy-Light Chiral Quark Model
- Application: Isgur-Wise function
- Application: $B_{d(s)} \rightarrow D_{s(d)} \bar{D}_{s(d)}$
- Application: $B \to K \eta'$
- Conclusions

Two main reasons to study *B* physics:

Reason 1: measuring Standard Model (SM) parameters

Two main reasons to study *B* physics:

Reason 1: measuring Standard Model (SM) parameters

$$V_{ ext{CKM}} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Kobayashi-Maskawa (4 independent parameters)

Two main reasons to study *B* physics:

Reason 1: measuring Standard Model (SM) parameters

$$V_{ ext{CKM}} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Kobayashi-Maskawa (4 independent parameters)

► Wolfenstein parametrization is more popular:

$$V_{
m CKM} = egin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(
ho-i\eta)\ -\lambda & 1-\lambda^2/2 & A\lambda^2\ A\lambda^3(1-
ho-i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Two main reasons to study *B* physics:

Reason 1: measuring Standard Model (SM) parameters

$$V_{ ext{CKM}} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Kobayashi-Maskawa (4 independent parameters)

Wolfenstein parametrization is more popular:

$$V_{
m CKM} = egin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(
ho-i\eta)\ -\lambda & 1-\lambda^2/2 & A\lambda^2\ A\lambda^3(1-
ho-i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

parameters involving 3rd quark family still poorly known

Reason 2: looking for New Physics beyond SM

Reason 2: looking for New Physics beyond SM

via new CP violation phases
 (richer CP-viol. phenomenology than in K physics)

Reason 2: looking for New Physics beyond SM

- via new CP violation phases
 (richer CP-viol. phenomenology than in K physics)
- via quantum loops involving new particles

Reason 2: looking for New Physics beyond SM

- via new CP violation phases
 (richer CP-viol. phenomenology than in K physics)
- via quantum loops involving new particles

 \blacktriangleright rare decays go only via loops \Rightarrow sensitive to new physics

Reason 2: looking for New Physics beyond SM

- via new CP violation phases
 (richer CP-viol. phenomenology than in K physics)
- via quantum loops involving new particles

- \blacktriangleright rare decays go only via loops \Rightarrow sensitive to new physics
- Iarge energy scale $\sim m_b \Rightarrow$ less QCD-pollution

Types of *B* **decays**

 $\langle 0|J_{
m hadr.}^{
m weak}|B
angle \propto F_B$

Types of *B* **decays**

 $[\]langle 0|J_{
m hadr.}^{
m weak}|B
angle \propto F_B$

 $\langle D|J_{
m hadr.}^{
m weak}|B
angle \propto F_0(q^2), F_1(q^2)$

$\langle D\pi | J_{ ext{hadr.1}}^{ ext{weak}} J_{ ext{hadr.2}}^{ ext{weak}} | B angle o$ very complicated

 $\langle D\pi | J_{hadr.1}^{weak} J_{hadr.2}^{weak} | B \rangle \rightarrow very complicated$ Factorization assumption:

 $pprox \langle \pi | J_{ ext{hadr.1}}^{ ext{weak}} | 0
angle \langle D | J_{ ext{hadr.2}}^{ ext{weak}} | B
angle \propto f_{\pi}, F_0(q^2), F_1(q^2)$

- $\langle D\pi | J_{ ext{hadr.1}}^{ ext{weak}} J_{ ext{hadr.2}}^{ ext{weak}} | B
 angle o$ very complicated
- Factorization assumption:
 - $pprox \langle \pi | J_{
 m hadr.1}^{
 m weak} | 0
 angle \langle D | J_{
 m hadr.2}^{
 m weak} | B
 angle \propto f_{\pi}, F_0(q^2), F_1(q^2)$

- $\langle D\pi | J_{ ext{hadr.1}}^{ ext{weak}} J_{ ext{hadr.2}}^{ ext{weak}} | B
 angle o$ very complicated
- Factorization assumption:

 $\approx \langle \pi | J_{\text{hadr},1}^{\text{weak}} | 0 \rangle \langle D | J_{\text{hadr},2}^{\text{weak}} | B \rangle \propto f_{\pi}, F_0(q^2), F_1(q^2)$ • explanation: fast pion \rightarrow "color transparency"

- $\langle D\pi | J_{ ext{hadr.1}}^{ ext{weak}} J_{ ext{hadr.2}}^{ ext{weak}} | B
 angle o$ very complicated
- Factorization assumption:
 - $pprox \langle \pi | J_{ ext{hadr.1}}^{ ext{weak}} | 0
 angle \langle D | J_{ ext{hadr.2}}^{ ext{weak}} | B
 angle \propto f_{\pi}, F_0(q^2), F_1(q^2)$
- explanation: fast pion \rightarrow "color transparency"
- good as a 1st approximation but needs improvement

Theory of nonleptonic B decays

- ${}$ Expand the $\langle D\pi|J_{ ext{hadr.1}}^{ ext{weak}}J_{ ext{hadr.2}}^{ ext{weak}}|B
 angle$ in both
 - (1) Λ_{QCD}/M_B (heavy-quark effective theory)
 - (2) $\alpha_s(M_B)$ (perturbative QCD)

Theory of nonleptonic *B* decays

- ${}$ Expand the $\langle D\pi|J_{ ext{hadr.1}}^{ ext{weak}}J_{ ext{hadr.2}}^{ ext{weak}}|B
 angle$ in both
 - (1) Λ_{QCD}/M_B (heavy-quark effective theory)(2) $\alpha_s(M_B)$ (perturbative QCD)
- To lowest order "non-factorizable gluons" are hard ⇒ can be treated perturbatively [Beneke, Buchalla, Neubert, Sachrajda, (1999,2000)]

Theory of nonleptonic B decays (2)

Problems:

- $\, {}_{ullet} \,$ difficult to go beyond leading order in $1/M_B$
- acceleration of spectator quark to final state
- not applicable to some processes: $B_d o D_s ar{D}_s, \dots$

Theory of nonleptonic B decays (2)

Problems:

- $\, {}_{ullet} \,$ difficult to go beyond leading order in $1/M_B$
- acceleration of spectator quark to final state
- not applicable to some processes: $B_d o D_s ar D_s, \dots$
- Alternative approach
 - (1) Λ_{QCD}/M_B
 - (2) $SU(3)_L \times SU3_R$

(heavy-quark effective theory)
(chiral symmetry)

Theory of nonleptonic B decays (2)

Problems:

- difficult to go beyond leading order in $1/M_B$
- acceleration of spectator quark to final state
- not applicable to some processes: $B_d \to D_s \bar{D}_s, \ldots$
- Alternative approach
 - (1) $\Lambda_{\rm QCD}/M_B$

(heavy-quark effective theory)

(2) $SU(3)_L \times SU3_R$

(chiral symmetry)

More "primitive" but has some advantages

At the meson level

Implementing HQ and chiral symmetries at the meson level [Burdman and Donoghue (1992), Wise (1992)]

$$egin{split} \mathcal{L} =& rac{f^2}{4} \partial_\mu \Sigma_{ab} \partial^\mu \Sigma_{ba}^\dagger - ext{Tr} \Big[ar{H}_a ig(i v \cdot \mathcal{D}_{ba} ig) H_b \Big] \ &- g_A ext{Tr} \Big[ar{H}_a H_b oldsymbol{\mathcal{A}}_{ba} \gamma_5 \Big] + \cdots \end{split}$$

At the meson level

Implementing HQ and chiral symmetries at the meson level [Burdman and Donoghue (1992), Wise (1992)]

$$egin{split} \mathcal{L} = & rac{f^2}{4} \partial_\mu \Sigma_{ab} \partial^\mu \Sigma_{ba}^\dagger - ext{Tr} \Big[ar{H}_a ig(i v \cdot \mathcal{D}_{ba} ig) H_b \Big] \ & -g_A ext{Tr} \Big[ar{H}_a H_b oldsymbol{\mathcal{A}}_{ba} \gamma_5 \Big] + \cdots \end{split}$$

$$\Sigma \equiv \xi^2 \equiv \mathrm{e}^{\left(rac{2i}{f}\Pi
ight)} \; ; \quad \Pi = rac{1}{\sqrt{2}} \left[egin{array}{ccc} rac{\pi^0}{\sqrt{2}} + rac{\eta_8}{\sqrt{6}} & \pi^+ & K^+ \ \pi^- & -rac{\pi^0}{\sqrt{2}} + rac{\eta_8}{\sqrt{6}} & K^0 \ K^- & rac{\pi^0}{\sqrt{2}} + rac{\eta_8}{\sqrt{6}} & -rac{2}{\sqrt{6}}\eta_8 \end{array}
ight]$$

At the meson level

Implementing HQ and chiral symmetries at the meson level [Burdman and Donoghue (1992), Wise (1992)]

$$egin{split} \mathcal{L} = & rac{f^2}{4} \partial_\mu \Sigma_{ab} \partial^\mu \Sigma_{ba}^\dagger - ext{Tr} \Big[ar{H}_a ig(i v \cdot \mathcal{D}_{ba} ig) H_b \Big] \ & -g_A ext{Tr} \Big[ar{H}_a H_b oldsymbol{\mathcal{A}}_{ba} \gamma_5 \Big] + \cdots \end{split}$$

$$\Sigma \equiv \xi^2 \equiv \mathrm{e}^{\left(rac{2i}{f}\Pi
ight)} \; ; \quad \Pi = rac{1}{\sqrt{2}} \left[egin{array}{ccc} rac{\pi^0}{\sqrt{2}} + rac{\eta_8}{\sqrt{6}} & \pi^+ & K^+ \ \pi^- & -rac{\pi^0}{\sqrt{2}} + rac{\eta_8}{\sqrt{6}} & K^0 \ K^- & rac{\pi^0}{\sqrt{2}} + rac{\eta_8}{\sqrt{6}} & -rac{2}{\sqrt{6}}\eta_8 \end{array}
ight]$$

$$H_a=rac{1+{
u\!\!\!/}}{2}\Bigl(ar{B}^*_{a\mu}\gamma^\mu-iar{B}_a\gamma_5\Bigr)\ ; \qquad ar{B}_a=ig(B^-,ar{B}^0,ar{B}_sig)$$

• Covariant derivative: $i \mathcal{D}^{\mu}_{ab} = i \delta_{ab} \partial^{\mu} + \mathcal{V}^{\mu}_{ab}$

- Covariant derivative: $i \mathcal{D}^{\mu}_{ab} = i \delta_{ab} \partial^{\mu} + \mathcal{V}^{\mu}_{ab}$
- Vector and axial vector fields

$$\mathcal{V}_{\mu}=-rac{i}{2}ig(\xi^{\dagger}\partial_{\mu}\xi+\xi\partial_{\mu}\xi^{\dagger}ig); \quad \mathcal{A}_{\mu}=-rac{i}{2}(\xi^{\dagger}\partial_{\mu}\xi-\xi\partial_{\mu}\xi^{\dagger}ig),$$

- Covariant derivative: $i \mathcal{D}^{\mu}_{ab} = i \delta_{ab} \partial^{\mu} + \mathcal{V}^{\mu}_{ab}$
- Vector and axial vector fields

$$\mathcal{V}_{\mu}=-rac{i}{2}ig(\xi^{\dagger}\partial_{\mu}\xi+\xi\partial_{\mu}\xi^{\dagger}ig); \quad \mathcal{A}_{\mu}=-rac{i}{2}(\xi^{\dagger}\partial_{\mu}\xi-\xi\partial_{\mu}\xi^{\dagger}ig),$$

- Covariant derivative: $i \mathcal{D}^{\mu}_{ab} = i \delta_{ab} \partial^{\mu} + \mathcal{V}^{\mu}_{ab}$
- Vector and axial vector fields

$$\mathcal{V}_{\mu}=-rac{i}{2}ig(\xi^{\dagger}\partial_{\mu}\xi+\xi\partial_{\mu}\xi^{\dagger}ig); \quad \mathcal{A}_{\mu}=-rac{i}{2}(\xi^{\dagger}\partial_{\mu}\xi-\xi\partial_{\mu}\xi^{\dagger}ig),$$

Heavy-light chiral perturbation theory. Loops, etc.

- Covariant derivative: $i \mathcal{D}^{\mu}_{ab} = i \delta_{ab} \partial^{\mu} + \mathcal{V}^{\mu}_{ab}$
- Vector and axial vector fields

$$\mathcal{V}_{\mu}=-rac{i}{2}ig(\xi^{\dagger}\partial_{\mu}\xi+\xi\partial_{\mu}\xi^{\dagger}ig); \quad \mathcal{A}_{\mu}=-rac{i}{2}(\xi^{\dagger}\partial_{\mu}\xi-\xi\partial_{\mu}\xi^{\dagger}ig),$$

- Heavy-light chiral perturbation theory. Loops, etc.
- Calculate chiral corrections to $f_B/f_{B_s}, \ldots$
[Eeg, Hiorth (2002, 2004)]. Similar ideas in [Bardeen, Hill (1994); Ebert et al. (1995, 1996); Deandrea et al. (1998)]

- [Eeg, Hiorth (2002, 2004)]. Similar ideas in [Bardeen, Hill (1994); Ebert et al. (1995, 1996); Deandrea et al. (1998)]
- Right below chiral symmetry breaking scale both quarks (u, d, ...) and Goldstone bosons $(\pi, K, ...)$ exist as degrees of freedom:

- [Eeg, Hiorth (2002, 2004)]. Similar ideas in [Bardeen, Hill (1994); Ebert et al. (1995, 1996); Deandrea et al. (1998)]
- Right below chiral symmetry breaking scale both quarks (u, d, \ldots) and Goldstone bosons (π, K, \ldots) exist as degrees of freedom:

$$\mathcal{L}_{\chi QM} = ar{\chi} \Big[\gamma^{\mu} (i \partial_{\mu} + \mathcal{V}_{\mu} + \gamma_5 \mathcal{A}_{\mu}) - m \Big] \chi$$

 $\chi(x)=e^{i\gamma_5\Pi/f}\,q(x)$ quarks with G. bosons "removed" $mpprox 250~{
m MeV}$ constituent mass

The usual heavy quark effective theory

$$b
ightarrow e^{-im_b v \cdot x} \left(Q_v^{(+)} + rac{1}{2m_b} rac{1-v}{2} i D \!\!\!\!/ Q_v^{(+)}
ight)$$

The usual heavy quark effective theory

$$b
ightarrow e^{-im_b v \cdot x} igg(Q_v^{(+)} + rac{1}{2m_b} rac{1-v}{2} i D \!\!\!\!/ Q_v^{(+)} igg)$$

$$egin{split} \mathcal{L}_{ ext{HQEFT}} = \pm \overline{Q_v^{(\pm)}} \, iv \cdot D \, Q_v^{(\pm)} \ + rac{1}{2m_Q} \overline{Q_v^{(\pm)}} \left(\, - rac{g_s}{2} \sigma \cdot G \, + \, (iD_\perp)^2
ight) Q_v^{(\pm)} \end{split}$$

The usual heavy quark effective theory

$$egin{aligned} b & o e^{-im_b v \cdot x} igg(Q_v^{(+)} + rac{1}{2m_b} rac{1-v}{2} i D\!\!\!/ Q_v^{(+)} igg) \ \mathcal{L}_{ ext{HQEFT}} &= \pm \overline{Q_v^{(\pm)}} \, iv \cdot D \, Q_v^{(\pm)} \ &+ rac{1}{2m_Q} \overline{Q_v^{(\pm)}} \left(-rac{g_s}{2} \sigma \cdot G \,+ \, (iD_\perp)^2
ight) Q_v^{(\pm)} \end{aligned}$$

Heavy-light meson-quark interaction

$${\cal L}_{Int}=-G_H\,\left[ar\chi_a\,\overline{H^{(\pm)}_{va}}\,Q^{(\pm)}_v\,+\overline{Q^{(\pm)}_v}\,H^{(\pm)}_{va}\,\chi_a
ight]$$

Hard gluons are integrated out. Soft gluons described as external fields in Fock-Schwinger gauge

 $x \cdot A = 0$ [Novikov et al. (1984)]

Hard gluons are integrated out. Soft gluons described as external fields in Fock-Schwinger gauge $x \cdot A = 0$ [Novikov et al. (1984)]

$$A^a_\mu(k) = -rac{i(2\pi)^4}{2} G^a_{
ho\mu}(0) rac{\partial}{\partial k_
ho} \delta^{(4)}(k) + \cdots$$

soft gluon effects will be expressed in terms of the gluon condensate $\langle 0 | \frac{\alpha_s}{\pi} G^2 | 0 \rangle$

Hard gluons are integrated out. Soft gluons described as external fields in Fock-Schwinger gauge $x \cdot A = 0$ [Novikov et al. (1984)]

$$A^a_\mu(k) = -rac{i(2\pi)^4}{2} G^a_{
ho\mu}(0) rac{\partial}{\partial k_
ho} \delta^{(4)}(k) + \cdots$$

- soft gluon effects will be expressed in terms of the gluon condensate $\langle 0 | \frac{\alpha_s}{\pi} G^2 | 0 \rangle$
- To determine parameters of the theory (such as quark-meson coupling constant G_H):

Hard gluons are integrated out. Soft gluons described as external fields in Fock-Schwinger gauge $x \cdot A = 0 \quad [Novikov et al. (1984)]$

$$A^a_\mu(k) = -rac{i(2\pi)^4}{2} G^a_{
ho\mu}(0) rac{\partial}{\partial k_
ho} \delta^{(4)}(k) + \cdots$$

- soft gluon effects will be expressed in terms of the gluon condensate $\langle 0 | \frac{\alpha_s}{\pi} G^2 | 0 \rangle$
- To determine parameters of the theory (such as quark-meson coupling constant G_H):

integrate out quarks ("bosonise theory") and create constraints on parameters

E.g. calculating self-energy of a heavy meson

E.g. calculating self-energy of a heavy meson

and comparing to the

kinetic Lagrangian for heavy boson leads to constraint

$$-iG_{H}^{2}N_{c}\left(I_{3/2}+2mI_{2}+irac{(8-3\pi)}{384N_{c}m^{3}}\langle0|rac{lpha_{s}}{\pi}G^{2}|0
angle
ight)=1$$

E.g. calculating self-energy of a heavy meson

and comparing to the

kinetic Lagrangian for heavy boson leads to constraint

$$-iG_{H}^{2}N_{c}\left(I_{3/2}+2mI_{2}+irac{(8-3\pi)}{384N_{c}m^{3}}\langle0|rac{lpha_{s}}{\pi}G^{2}|0
angle
ight)=1$$

 $I_{3/2}, I_2, I_1$ — divergent loop integrals; at the end expressed in terms of physical quantities f_{π}, m, \ldots

E.g. calculating self-energy of a heavy meson

and comparing to the

kinetic Lagrangian for heavy boson leads to constraint

$$-iG_{H}^{2}N_{c}\left(I_{3/2}+2mI_{2}+irac{(8-3\pi)}{384N_{c}m^{3}}\langle0|rac{lpha_{s}}{\pi}G^{2}|0
angle
ight)=1$$

 $I_{3/2}, I_2, I_1$ — divergent loop integrals; at the end expressed in terms of physical quantities f_{π}, m, \ldots

This completes definition of the model

Application: Isgur-Wise function

• Isgur-Wise function $\xi(\omega)$ defined by

$$egin{aligned} &\langle D | \overline{Q_{cv'}} \gamma^\mu Q_{bv} | B
angle &= \sqrt{M_B M_D} \; m{\xi}(m{\omega}) (v+v')^\mu \ &\omega \equiv v \cdot v' \end{aligned}$$

Application: Isgur-Wise function

• Isgur-Wise function $\xi(\omega)$ defined by

Describes (in HQ limit) all $B \rightarrow D(D^*)$ processes.
Important for determination of CKM matrix.

Application: Isgur-Wise function

• Isgur-Wise function $\xi(\omega)$ defined by

- Describes (in HQ limit) all $B \rightarrow D(D^*)$ processes.
 Important for determination of CKM matrix.
- Determined by diagrams

Isgur-Wise function — **results**

Result:

$$\xi(\omega) = rac{2}{1+\omega}(1-
ho) +
ho r(\omega) + rac{
ho\langle 0|rac{lpha_s}{\pi}G^2|0
angle}{24m^2f_\pi^2}rac{1-r(\omega)\omega}{1+\omega}$$

where

$$\rho = \frac{(1+3g_A) + \frac{\pi}{32} \frac{G_H^2}{m^3} \langle 0 | \frac{\alpha_s}{\pi} G^2 | 0 \rangle}{4(1 + \frac{N_c m^2}{8\pi f^2})}$$
$$r(\omega) = \frac{1}{\sqrt{\omega^2 - 1}} \ln \left(\omega + \sqrt{\omega^2 - 1}\right)$$

Isgur-Wise function — results

Result:

$$\xi(\omega)=rac{2}{1+\omega}(1-
ho)+
ho r(\omega)+rac{
ho\langle 0|rac{lpha_s}{\pi}G^2|0
angle}{24m^2f_\pi^2}rac{1-r(\omega)\omega}{1+\omega}$$

where

$$\rho = \frac{(1+3g_A) + \frac{\pi}{32} \frac{G_H^2}{m^3} \langle 0 | \frac{\alpha_s}{\pi} G^2 | 0 \rangle}{4(1 + \frac{N_c m^2}{8\pi f^2})}$$
$$r(\omega) = \frac{1}{\sqrt{\omega^2 - 1}} \ln \left(\omega + \sqrt{\omega^2 - 1}\right)$$

Numerically, expanding around no-recoil point $\omega = 1$:
 $\xi(\omega) = 1 - 0.64(\omega - 1) + \cdots$

- [Eeg, Fajfer, Prapotnik (2005); Eeg, K.K. (2005)]
- factorized amplitude

- [Eeg, Fajfer, Prapotnik (2005); Eeg, K.K. (2005)]
- factorized amplitude

- [Eeg, Fajfer, Prapotnik (2005); Eeg, K.K. (2005)]
- factorized amplitude

- [Eeg, Fajfer, Prapotnik (2005); Eeg, K.K. (2005)]
- factorized amplitude

• Even for $\bar{B}_d \to D_s^* \bar{D}_s$, $D_s^* \bar{D}_s^*$ factorized amplitude is small because of its annihilation topology

- [Eeg, Fajfer, Prapotnik (2005); Eeg, K.K. (2005)]
- factorized amplitude

- Even for $\bar{B}_d \to D_s^* \bar{D}_s, \ D_s^* \bar{D}_s^*$ factorized amplitude is small because of its annihilation topology
- non-factorizable contributions dominant

Bosonisation of left-hand-side

$$\left(\overline{q_L}\,t^a\,\gamma^lpha\,Q^{(+)}_{v_b}
ight)_{1G}
ightarrow$$

Bosonisation of left-hand-side

$$\left(\overline{q_L} \, t^a \, \gamma^lpha \, Q^{(+)}_{v_b}
ight)_{1G}
ightarrow$$

$$igstarrow rac{G_H \, g_s}{64\pi} \, G^a_{\mu
u} ext{Tr} iggl[\xi^\dagger \gamma^lpha L \, H^{(+)}_b iggl(\sigma^{\mu
u} - F \left\{ \sigma^{\mu
u},
ot\!\!\!/_b
ight\} iggr) iggr]
onumber \ F \ \equiv \ rac{2\pi f_\pi^2}{m^2 \, N_c} pprox rac{1}{3}$$

Bosonisation of right-hand-side

$$\left(\overline{Q_{v_c}^{(+)}} \, t^a \; \gamma^lpha \; LQ_{ar{v}}^{(-)}
ight)_{1G}
ightarrow$$

Bosonisation of right-hand-side

A

$$egin{aligned} X &\equiv rac{4}{\pi} (\lambda - 1) \, r(-\lambda) \ ; \qquad \lambda \equiv ar v \cdot v_c \ r(x) &= rac{1}{\sqrt{x^2 - 1}} \ln ig(x + \sqrt{x^2 - 1}ig) \end{aligned}$$

Multiplying LHS \times RHS, and doing traces one obtains the amplitude

$$egin{aligned} \mathcal{A}(B
ightarrow Dar{D})_{ ext{gluon condensate}} = & \ & rac{G_F}{\sqrt{2}} V_{cb} V_{cd}^st \, a_2 \, rac{G_H^3 \sqrt{M_B^3}}{3m(\lambda-1)2^8} \, \langle 0| rac{lpha_s}{\pi} G^2 | 0
angle \ & imes \, \left[-rac{3}{4} (2F+1)X + \lambda - 1
ight] \end{aligned}$$

 $a_2 = 1.29 + 0.08i$

Wilson coefficient

 \checkmark amounts to $\approx 30\%$ correction

 $\ \, {} \ \, {} \ \, c \to e^{-im_c v \cdot x} \big(Q_v^{(+)} + \frac{1}{2m_c} \frac{1- {} \! \! / \! \! }{2} i D \! \! \! \! Q_v^{(+)} \big) \qquad \text{in HQET}$

 \blacksquare amounts to pprox 30% correction

• $1/m_b$ corrections much smaller (but calculated as well)

Chiral loop contributions

Generated by heavy-light chiral perturbation theory also non-factorizable
Predictions for $B_d \to D_s^{(*)} D_s^{(*)}$ (Numbers without $1/m_c$ corrections; $\approx 30\%$) $Br(\bar{B}^0 \to D_s^+ D_s^-) = 2.5 \times 10^{-4}$ $Br(\bar{B}^0_s \to D^+ D^-) = 4.5 \times 10^{-3}$ $Br(\bar{B}^0 \to D_{s}^{+*}D_{s}^{-}) = 3.3 \times 10^{-4}$ $Br(\bar{B}^0_{\circ} \to D^{+*}D^{-}) = 6.8 \times 10^{-3}$ $Br(ar{B}^0 o D_{\circ}^+ D_{\circ}^{-*}) = 2.0 imes 10^{-4}$ $Br(\bar{B}^0_{\circ} \to D^+ D^{-*}) = 4.3 \times 10^{-3}$ $Br(\bar{B}^0 o D_{*}^{*+} D_{*}^{-*}) = 5.4 imes 10^{-4}$ $Br(ar{B}^0_s o D^{*+}D^{-*}) = 9.1 imes 10^{-3}$

Predictions for $B_d \to D_s^{(*)} D_s^{(*)}$ • (Numbers without $1/m_c$ corrections; $\approx 30\%$) $Br(\bar{B}^0 \to D_s^+ D_s^-) = 2.5 \times 10^{-4}$ $Br(\bar{B}^0_s \to D^+ D^-) = 4.5 \times 10^{-3}$ $Br(\bar{B}^0 \to D_{s}^{+*}D_{s}^{-}) = 3.3 \times 10^{-4}$ $Br(\bar{B}^0_{a} \to D^{+*}D^{-}) = 6.8 \times 10^{-3}$ $Br(ar{B}^0 o D_{\circ}^+ D_{\circ}^{-*}) = 2.0 imes 10^{-4}$ $Br(\bar{B}^0_{\circ} \to D^+ D^{-*}) = 4.3 \times 10^{-3}$ $Br(\bar{B}^0 o D_{*}^{*+} D_{*}^{-*}) = 5.4 imes 10^{-4}$ $Br(ar{B}^0_s o D^{*+}D^{-*}) = 9.1 imes 10^{-3}$

Decays involving vector D^* first to be measured?

Application: $B \to K \eta'$

CLEO, Belle and BaBar collaborations see a lot of η' 's in charmless (rare) hadronic *B* decays ...

$${\sf Br}(B^+ o K^+ \eta') = (77 \pm 5) \cdot 10^{-6}$$

 ${\sf Br}(B^0 o K^0 \eta') = (61 \pm 6) \cdot 10^{-6}$

• ... as compared to the π 's:

$$Br(B^+ \to K^+ \pi^0) = (13 \pm 1) \cdot 10^{-6}$$
$$Br(B^0 \to K^0 \pi^0) = (11 \pm 1) \cdot 10^{-6}$$

Application: $B \to K \eta'$

CLEO, Belle and BaBar collaborations see a lot of η' 's in charmless (rare) hadronic *B* decays ...

$${\sf Br}(B^+ o K^+ \eta') = (77 \pm 5) \cdot 10^{-6}$$

 ${\sf Br}(B^0 o K^0 \eta') = (61 \pm 6) \cdot 10^{-6}$

• ... as compared to the π 's:

$$Br(B^+ \to K^+ \pi^0) = (13 \pm 1) \cdot 10^{-6}$$
$$Br(B^0 \to K^0 \pi^0) = (11 \pm 1) \cdot 10^{-6}$$

• Why are η' channels enhanced?

SU(3)_F symm. approach

- SU(3)_F symm. approach
- perturbative approach

- SU(3)_F symm. approach \rightarrow SP $> 25 \times 10^{-9}$ GeV .
- perturbative approach

• SU(3)_F symm. approach \rightarrow SP > 25 \times 10⁻⁹ GeV .

• perturbative approach $\rightarrow SP(5\pm8) \times 10^{-9}$ GeV

[Eeg, K.K., Picek (2005)]

Schematically:

 ${}^{\sf I}K$

• LHS: Same thing as in the $B \to D\bar{D}$ case $(a_2 \to \Delta F_1)$.

- LHS: Same thing as in the $B \to D\bar{D}$ case $(a_2 \to \Delta F_1)$.
- **RHS:** $F_{\eta'GG^*}$ by [Ali and Parkhomenko (2002,2003); Kroll and Passek-Kumerički (2003)]

$HL\chi QM$ approach (2)

Problem: kaon is not soft

$HL\chi QM$ approach (2)

Problem: kaon is not soft ⇒ Extrapolation assumption (lattice inspired, [Becirevic and Kaidalov (2000)]):

$$= = = = \underbrace{\stackrel{|K|}{=}}_{q} \operatorname{vect.} : F_K(q^2) = \frac{F_K(0)}{\left(1 - \frac{q^2}{M_{B_s}^2}\right)\left(1 - \frac{q^2}{\lambda M_{B_s}^2}\right)}$$

$HL\chi QM$ approach (2)

Problem: kaon is not soft ⇒ Extrapolation assumption (lattice inspired, [Becirevic and Kaidalov (2000)]):

$$====\stackrel{K}{=}\stackrel{\text{vect.}}{=}\stackrel{\text{vect.}}{=}\stackrel{K}{=}\stackrel{F_{K}(q^{2})}{=}\frac{F_{K}(q^{2})}{\left(1-\frac{q^{2}}{M_{B_{s}}^{2}}\right)\left(1-\frac{q^{2}}{\lambda M_{B_{s}}^{2}}\right)}$$

Result:

 $\mathsf{I}K$

$$egin{aligned} M(B o K \eta')_{\langle G^2
angle} &= rac{G_F}{4\sqrt{2}} \, V_{ts}^* V_{tb} \, \Delta F_1 \langle 0 | rac{lpha_s}{\pi} G^2 | 0
angle \ & imes rac{G_H \, F_K(m_{\eta'}^2) \, F_{\eta' G G^*}(m_{\eta'}^2)}{3 f_B \sqrt{M_B}} rac{M_B^2}{32} iggl\{ rac{f_\pi^2}{m^2 N_c} + rac{3}{2\pi} iggr\} \end{aligned}$$

• Singlet penguin amplitude within $HL\chi QM$:

$$SP(B
ightarrow K\eta')_{\langle G^2
angle} = (8 \pm 3) imes 10^{-9} \; {
m GeV}$$

with uncertainty coming mostly from uncertainty of $\langle 0|rac{lpha_s}{\pi}G^2|0
angle$ and $F_{\eta'GG^*}$

Singlet penguin amplitude within $HL\chi QM$:

$$SP(B
ightarrow K\eta')_{\langle G^2
angle} = (8 \pm 3) imes 10^{-9} \; {
m GeV}$$

with uncertainty coming mostly from uncertainty of $\langle 0|rac{lpha_s}{\pi}G^2|0
angle$ and $F_{\eta'GG^*}$

• Combining this with complementary QCD factorization result [Beneke and Neubert (2002)]... $SP(B \to K\eta')_{\eta'=|q\bar{q}\rangle} = (5 \pm 8) \times 10^{-9} \text{ GeV}$

Singlet penguin amplitude within HL χ QM:

$$SP(B
ightarrow K\eta')_{\langle G^2
angle} = (8 \pm 3) imes 10^{-9} \; {
m GeV}$$

with uncertainty coming mostly from uncertainty of $\langle 0|rac{lpha_s}{\pi}G^2|0
angle$ and $F_{\eta'GG^*}$

- Combining this with complementary QCD factorization result [Beneke and Neubert (2002)]... $SP(B \to K \eta')_{\eta' = |q\bar{q}\rangle} = (5 \pm 8) \times 10^{-9} \text{ GeV}$
- In the second secon

Singlet penguin amplitude within HL χ QM:

$$SP(B
ightarrow K\eta')_{\langle G^2
angle} = (8 \pm 3) imes 10^{-9} \; {
m GeV}$$

with uncertainty coming mostly from uncertainty of $\langle 0|rac{lpha_s}{\pi}G^2|0
angle$ and $F_{\eta'GG^*}$

- Combining this with complementary QCD factorization result [Beneke and Neubert (2002)] ... $SP(B \to K \eta')_{\eta' = |q\bar{q}\rangle} = (5 \pm 8) \times 10^{-9} \text{ GeV}$
- In the second secon
- Singlet penguin apparently not dominant mechanism behind $B \to K \eta'$ rate enhancement.

Singlet penguin gluonic mechanism has significant but not dominant role in $B \to K \eta'$ amplitude

- Singlet penguin gluonic mechanism has significant but not dominant role in $B \to K \eta'$ amplitude
- No new physics is needed, but better understanding of the discrepancy between two described approaches would be welcome

- Singlet penguin gluonic mechanism has significant but not dominant role in $B \to K \eta'$ amplitude
- No new physics is needed, but better understanding of the discrepancy between two described approaches would be welcome
- Heavy-light chiral quark model can describe some features of rare B meson decays

- Singlet penguin gluonic mechanism has significant but not dominant role in $B \to K \eta'$ amplitude
- No new physics is needed, but better understanding of the discrepancy between two described approaches would be welcome
- Heavy-light chiral quark model can describe some features of rare B meson decays
- Works better for heavy-light (Isgur-Wise) and heavy-heavy ($B \rightarrow D\bar{D}$) than for light-light ($B \rightarrow K\eta'$) final states.

- Singlet penguin gluonic mechanism has significant but not dominant role in $B \to K \eta'$ amplitude
- No new physics is needed, but better understanding of the discrepancy between two described approaches would be welcome
- Heavy-light chiral quark model can describe some features of rare B meson decays
- Works better for heavy-light (Isgur-Wise) and heavy-heavy ($B \rightarrow D\bar{D}$) than for light-light ($B \rightarrow K\eta'$) final states.

The End

Singlet penguin part

 ${}$ [Chiang, Gronau, Rosner (2003)]: SP/Ppprox 0.4-0.8

Singlet penguin part

 ${}$ [Chiang, Gronau, Rosner (2003)]: SP/Ppprox 0.4-0.8

- Possible objections:
 - $\eta \eta'$ mixing implementation
 - Hybrid method (symmetry + quark dynamics), overcomplete basis: more flavour topologies than true SU(3)_F invariants

Alternative flavour symmetry approaches

Comparison of different η – η' mixing implementations (single angle, two angles [Feldman, Kroll, Stech]) — results practically unchanged

Alternative flavour symmetry approaches

- Comparison of different η η' mixing implementations (single angle, two angles [Feldman, Kroll, Stech]) → results practically unchanged
- Pure" SU(3)_F symmetry approach (generalization of [Savage and Wise (1989)])

 $H_{\text{eff}} = a B_k H(3)^k P_i^j P_j^i + b B_i H(3)^k P_k^j P_j^i + c B_i H(\bar{6})_k^{ij} P_j^m P_m^k$ $+ d B_i H(15)_k^{ij} P_j^m P_m^k + e B_i H(15)_m^{jk} P_k^m P_j^i + \tilde{f} B_i H(3)^k P_k^i \eta_1$ $+ \tilde{g} B_i H(\bar{6})_k^{ij} P_j^k \eta_1 + \tilde{h} B_i H(15)_k^{ij} P_j^k \eta_1 + \tilde{s} B_k H(3)^k \eta_1 \eta_1$

Alternative flavour symmetry approaches

- Comparison of different η η' mixing implementations (single angle, two angles [Feldman, Kroll, Stech]) → results practically unchanged
- Pure" SU(3)_F symmetry approach (generalization of [Savage and Wise (1989)])
- $H_{\text{eff}} = a B_k H(3)^k P_i^j P_j^i + b B_i H(3)^k P_k^j P_j^i + c B_i H(\bar{6})_k^{ij} P_j^m P_m^k$ $+ d B_i H(15)_k^{ij} P_j^m P_m^k + e B_i H(15)_m^{jk} P_k^m P_j^i + \tilde{f} B_i H(3)^k P_k^i \eta_1$ $+ \tilde{g} B_i H(\bar{6})_k^{ij} P_j^k \eta_1 + \tilde{h} B_i H(15)_k^{ij} P_j^k \eta_1 + \tilde{s} B_k H(3)^k \eta_1 \eta_1$
- we get SP/P = 0.31 0.36
- → result (large SP) is not sensitive to details of SU(3)_F symmetry implementation
Hiperindex

- Overview
- Introduction to B physics
- Introduction to B physics (2)
- Types of B decays
- **J** Types of B decays (2)
- Theory of nonleptonic B decays
- Theory of nonleptonic B decays (2)
- At the meson level
- At the meson level (2)
- Heavy-Light Chiral Quark Model
- Heavy-Light Chiral Quark Model (2)
- Heavy-Light Chiral Quark Model (3)
- Bosonisation of HL χ QM
- Isgur-Wise function
- Isgur-Wise function results

	$B_d ightarrow D_s ar{D_s}$
	Gluon Condensate Contributions
	Gluon Condensate Contributions (2)
_	Gluon Condensate Contributions (3)
_	$1/m_c$ corrections
٩	Chiral loop contributions
٩	Predictions for $B_d ightarrow D_s^{(*)} D_s^{\overline{(*)}}$
٩	B ightarrow KP Experiments
_	Singlet penguin
_	$HL\chiQM$ approach
_	$HL\chi~QM$ approach (2)
_	Singlet penguin $B ightarrow K \eta'$ (results)
_	Conclusions
_	SP in SU(3) _F approach
_	SU(3) - SP part
	Alternative SU(3) approaches