# $B \rightarrow K \eta'$ decay induced by the singlet-digluon $b \rightarrow s \eta'$ transition

*Krešimir Kumerički* Department of Physics, University of Zagreb

Collaboration with: J. O. Eeg (University of Oslo) and I. Picek (University of Zagreb)

*"2002 LHC Days in Split"* 8-12 October 2002., Split, Croatia

1.  $B 
ightarrow K \eta'$  decay — experimental data — motivation

- 1.  $B 
  ightarrow K \eta'$  decay experimental data motivation
- 2. Various theoretical approaches

- 1.  $B 
  ightarrow K \eta'$  decay experimental data motivation
- 2. Various theoretical approaches
- 3. Digluon "singlet-penguin"  $b \to sg^*g^* \to s\eta'$  amplitude and suppression thereof

- 1.  $B 
  ightarrow K \eta'$  decay experimental data motivation
- 2. Various theoretical approaches
- 3. Digluon "singlet-penguin"  $b \to sg^*g^* \to s\eta'$  amplitude and suppression thereof
- 4. Explicit calculation of short-distance digluon amplitude,  $b 
  ightarrow sg^*g^*$  vertex

- 1.  $B 
  ightarrow K \eta'$  decay experimental data motivation
- 2. Various theoretical approaches
- 3. Digluon "singlet-penguin"  $b \to sg^*g^* \to s\eta'$  amplitude and suppression thereof
- 4. Explicit calculation of short-distance digluon amplitude,  $b 
  ightarrow sg^*g^*$  vertex
- 5.  $g^*g^*\eta'$  vertex

- 1.  $B 
  ightarrow K \eta'$  decay experimental data motivation
- 2. Various theoretical approaches
- 3. Digluon "singlet-penguin"  $b \to sg^*g^* \to s\eta'$  amplitude and suppression thereof
- 4. Explicit calculation of short-distance digluon amplitude,  $b 
  ightarrow sg^*g^*$  vertex
- 5.  $g^*g^*\eta'$  vertex
- 6. Gluing vertices togeter:  $b \rightarrow s\eta'$  amplitude

- 1.  $B 
  ightarrow K \eta'$  decay experimental data motivation
- 2. Various theoretical approaches
- 3. Digluon "singlet-penguin"  $b \to sg^*g^* \to s\eta'$  amplitude and suppression thereof
- 4. Explicit calculation of short-distance digluon amplitude,  $b 
  ightarrow sg^*g^*$  vertex
- 5.  $g^*g^*\eta'$  vertex
- 6. Gluing vertices togeter:  $b \rightarrow s\eta'$  amplitude
- 7.  $B \rightarrow K \eta'$  amplitude

- 1.  $B 
  ightarrow K \eta'$  decay experimental data motivation
- 2. Various theoretical approaches
- 3. Digluon "singlet-penguin"  $b \to sg^*g^* \to s\eta'$  amplitude and suppression thereof
- 4. Explicit calculation of short-distance digluon amplitude,  $b 
  ightarrow sg^*g^*$  vertex
- 5.  $g^*g^*\eta'$  vertex
- 6. Gluing vertices togeter:  $b \rightarrow s\eta'$  amplitude
- 7.  $B \rightarrow K \eta'$  amplitude
- 8. Conclusions

#### $B \rightarrow K \eta'$ decay — experimental data

#### $B \rightarrow K \eta'$ decay — experimental data

• CLEO, Belle and BaBar collaborations see a lot of  $\eta$ 's in charmless (rare) hadronic *B* decays

#### $B ightarrow K \eta'$ decay — experimental data

• CLEO, Belle and BaBar collaborations see a lot of  $\eta'$ 's in charmless (rare) hadronic B decays

• as compared to the  $\pi$ 's:

#### $B \rightarrow K \eta'$ decay — experimental data

• CLEO, Belle and BaBar collaborations see a lot of  $\eta$ 's in charmless (rare) hadronic *B* decays

• as compared to the  $\pi$ 's:

Br(B<sup>+</sup> → K<sup>+</sup>π<sup>0</sup>) = (12.7 ± 1.2) · 10<sup>-6</sup> Br(B<sup>0</sup> → K<sup>0</sup>π<sup>0</sup>) = (10.2 ± 1.5) · 10<sup>-6</sup>

• What makes  $\eta$ ''s special?

#### $B \rightarrow K \eta'$ decay — experimental data

• CLEO, Belle and BaBar collaborations see a lot of  $\eta$ 's in charmless (rare) hadronic *B* decays

• as compared to the  $\pi$ 's:

• What makes  $\eta'$ 's special?

• Experience with  $\eta'$  mass (U(1) problem:  $m_{\eta'} \gg m_{\pi}$ ) suggests: axial anomaly

## **Various theoretical approaches**

1. Approaches using anomaly

Atwood and Soni (1997), Hou and Tseng (1998), Ali et al. (1998), etc.

## **Various theoretical approaches**

#### 1. Approaches using anomaly

- Atwood and Soni (1997), Hou and Tseng (1998), Ali et al. (1998), etc.
- but for the off-shell gluons  $\eta'gg$  vertex is suppressed and not very "anomalous"

## **Various theoretical approaches**

#### **1. Approaches using anomaly**

- Atwood and Soni (1997), Hou and Tseng (1998), Ali et al. (1998), etc.
- $\blacklozenge$  but for the off-shell gluons  $\eta' gg$  vertex is suppressed and not very "anomalous"

#### 2. Other approaches

- Halperin and Zhitnitsky (1997)  $b \to s\bar{c}c$ , intrinsic *charm* of  $\eta'$  too large  $Br(B \to K^*\eta')$
- Hou and Tseng (1998), Kagan and Petrov (1997) new physics
- Beneke and Neubert (2002) QCD factorization approach problems, large errors

#### 3. Rosner et al. (1997, 2000, 2002)

 general flavour-SU(3) analysis of different classes of diagrams and their contributions

#### 3. Rosner et al. (1997, 2000, 2002)

 general flavour-SU(3) analysis of different classes of diagrams and their contributions



#### 3. Rosner et al. (1997, 2000, 2002)

 general flavour-SU(3) analysis of different classes of diagrams and their contributions



$$\mathcal{A}(B \to K\eta') = \frac{3}{\sqrt{6}}P + \frac{4}{\sqrt{3}}S$$



$$\mathcal{A}(B \to K\eta') = \frac{3}{\sqrt{6}}P + \frac{4}{\sqrt{3}}S$$



• this analysis is not "from-the-first-principles"; overall normalization is fixed by fit to  $Br(B \rightarrow K\pi) \Rightarrow$  short-distance calculation is needed

$$\mathcal{A}(B \to K\eta') = \frac{3}{\sqrt{6}}P + \frac{4}{\sqrt{3}}S$$



• this analysis is not "from-the-first-principles"; overall normalization is fixed by fit to  $Br(B \rightarrow K\pi) \Rightarrow$  short-distance calculation is needed

short-distance penguin calculations give

 $Br(B \to K\eta') \sim (1-3) \cdot 10^{-6}$  (perturbative standard-model)

$$\mathcal{A}(B \to K\eta') = \frac{3}{\sqrt{6}}\mathbf{P} + \frac{4}{\sqrt{3}}\mathbf{S}$$



• this analysis is not "from-the-first-principles"; overall normalization is fixed by fit to  $Br(B \rightarrow K\pi) \Rightarrow$  short-distance calculation is needed

short-distance penguin calculations give

 $Br(B \to K\eta') \sim (1-3) \cdot 10^{-6}$  (perturbative standard-model)

• our goal: short-distance calculation of digluon *singlet-penguin* contribution

• Experimental data call also for the singlet penguin S:

$$\mathcal{A}(B \to K\eta') = \frac{3}{\sqrt{6}}\mathbf{P} + \frac{4}{\sqrt{3}}\mathbf{S}$$



• this analysis is not "from-the-first-principles"; overall normalization is fixed by fit to  $Br(B \rightarrow K\pi) \Rightarrow$  short-distance calculation is needed

short-distance penguin calculations give

 $Br(B \to K\eta') \sim (1-3) \cdot 10^{-6}$  (perturbative standard-model)

• our goal: short-distance calculation of digluon *singlet-penguin* contribution

Back to results

• Digluon amplitude is sometimes dismissed on the basis of Simma and Wyler(1990) who demonstrated cancelation of the large logs in  $b \rightarrow s + \text{glueball}$ 

• Digluon amplitude is sometimes dismissed on the basis of Simma and Wyler(1990) who demonstrated cancelation of the large logs in  $b \rightarrow s + \text{glueball}$ 

$$\sim F_1(x)(p^2\gamma^\mu-pp^\mu)L-F_2(x)i\sigma_{\mu
u}q^
u m_bR$$

• Digluon amplitude is sometimes dismissed on the basis of Simma and Wyler(1990) who demonstrated cancelation of the large logs in  $b \rightarrow s + \text{glueball}$ 



• Digluon amplitude is sometimes dismissed on the basis of Simma and Wyler(1990) who demonstrated cancelation of the large logs in  $b \rightarrow s + \text{glueball}$ 



 $\blacklozenge x \ll 1 \implies (F_1 \sim \ln x) \gg (F_2 \sim x^2 \ln x)$ 

• Digluon amplitude is sometimes dismissed on the basis of Simma and Wyler(1990) who demonstrated cancelation of the large logs in  $b \rightarrow s + \text{glueball}$ 



 $\blacklozenge x \ll 1 \implies (F_1 \sim \ln x) \gg (F_2 \sim x^2 \ln x)$ 

•  $F_1$  terms cancel for on-shell or soft gluons (Ward identities, low-energy theorem Low(1958))  $\Rightarrow$  suppression

• Digluon amplitude is sometimes dismissed on the basis of Simma and Wyler(1990) who demonstrated cancelation of the large logs in  $b \rightarrow s + \text{glueball}$ 



 $\blacklozenge x \ll 1 \implies (F_1 \sim \ln x) \gg (F_2 \sim x^2 \ln x)$ 

- $F_1$  terms cancel for on-shell or soft gluons (Ward identities, low-energy theorem Low(1958))  $\Rightarrow$  suppression
- but not for hard off-shell gluons (Witten (1977))!

• Simma and Wyler (1990): small external momenta —  $p_b, p_s, p_g \ll m_W$ 

- Simma and Wyler (1990): small external momenta  $p_b, p_s, p_g \ll m_W$
- This work:  $p_b, p_s \rightarrow 0$ , but general  $p_g$

- Simma and Wyler (1990): small external momenta  $p_b, p_s, p_g \ll m_W$
- This work:  $p_b, p_s \rightarrow 0$ , but general  $p_g$

#### **Building blocks**









$$\begin{split} \Gamma^{\mu}(0,p,-p) &= \frac{4M_W^2}{m_i^2 - M_W^2} \left( 1 + \frac{m_i^2}{2M_W^2} \right) (p^2 g^{\mu\nu} - p^{\mu} p^{\nu}) \gamma_{\nu} L \int_0^1 \mathrm{d}x x (1-x) \ln \frac{D}{C} \\ &+ M_W^2 \gamma^{\mu} L + 2M_W^2 \left( 1 + \frac{m_i^2}{2M_W^2} \right) \gamma^{\mu} L \int_0^1 \mathrm{d}x (1-x) \ln \frac{D}{\mu_*^2} \\ D &= x m_i^2 + (1-x) M_W^2 - x (1-x) p^2 \\ C &= m_i^2 - x (1-x) p^2 \end{split}$$

• Divergent parts of  $\Gamma^{\mu}$  and  $\Sigma$  cancel among themselves in the final amplitude

♦ Box

$$\mu, a = \mu, b = \mu, b = \mu, b = \frac{1}{4\pi^2} \frac{G_F}{\sqrt{2}} g_s^2 t^b t^a I^{\mu\nu}(0, 0, -p, p)$$

♦ Box

$$\mu, a = \mu, b = \mu, b = \mu, b = \frac{1}{4\pi^2} \frac{G_F}{\sqrt{2}} g_s^2 t^b t^a I^{\mu\nu}(0, 0, -p, p)$$

•  $\mathbb{Y}_{1,2} = \text{complicated functions of } x$ ,  $m_i^2$ ,  $M_W^2$ ,  $p^2$ 

♦ Box

$$\mu, a = \mu, b =$$

 $igoplus \mathbb{Y}_{1,2} = ext{complicated functions of } x$  ,  $m_i^2$  ,  $M_W^2$  ,  $p^2$ 

We agree with Simma and Wyler (1990) in appropriate regions of parameter space.

## Complete amplitude for $b ightarrow sg^*g^*$

$$\mathcal{A} = \mathbf{i} \frac{\alpha_s}{\pi} \frac{G_F}{\sqrt{2}} \bar{s}(0) t^b t^a \sum_i \lambda_i T_{i\mu\nu} b(0) \epsilon_a^{\mu}(-p) \epsilon_b^{\nu}(p) + \text{(crossed)} ,$$

 $T_i^{\mu\nu} = T_{i\text{Box}}^{\mu\nu} + T_{i\text{Triangle}}^{\mu\nu} + T_{i\text{Self-energy}}^{\mu\nu} \; .$ 

#### Complete amplitude for $b ightarrow sg^*g^*$

$$\begin{split} \mathcal{A} &= \mathrm{i} \frac{\alpha_s}{\pi} \frac{G_F}{\sqrt{2}} \bar{s}(0) t^b t^a \sum_i \lambda_i T_{i\mu\nu} b(0) \epsilon_a^{\mu}(-p) \epsilon_b^{\nu}(p) \ + \ \text{(crossed)} \ , \\ T_i^{\mu\nu} &= T_{i\mathrm{Box}}^{\mu\nu} + T_{i\mathrm{Triangle}}^{\mu\nu} + T_{i\mathrm{Self-energy}}^{\mu\nu} \ . \end{split}$$

Adding up, UV-divergences cancel and one gets:

$$T_i^{\mu
u} = \left(-i\epsilon^{\mu
u
ho\sigma}p_\sigma\gamma_
ho L
ight) A_i \;+\;$$
 ( $\mu$ - $u$  symmetric part)

where

$$\begin{split} A_i = &-\frac{8M_W^2}{m_i^2 - M_W^2} \left( 1 + \frac{m_i^2}{2M_W^2} \right) \int_0^1 \mathrm{d}x x (1 - x) \ln \frac{D}{C} \\ &+ \frac{2M_W^2}{m_i^2 - M_W^2} \left( 1 - \frac{m_i^2}{2M_W^2} \right) \int_0^1 \mathrm{d}x (1 - x) \left\{ (3x - 1) \mathbb{Y}_1 + \left[ x^2 (1 - x) p^2 + (x + 1) m_i^2 \right] \mathbb{Y}_2 \right\} \end{split}$$

#### Complete amplitude for $b \rightarrow sg^*g^*$

$$\begin{split} \mathcal{A} &= \mathrm{i} \frac{\alpha_s}{\pi} \frac{G_F}{\sqrt{2}} \bar{s}(0) t^b t^a \sum_i \lambda_i T_{i\mu\nu} b(0) \epsilon^{\mu}_a(-p) \epsilon^{\nu}_b(p) \ + \ \text{(crossed)} \ , \\ T_i^{\mu\nu} &= T_{i\mathrm{Box}}^{\mu\nu} + T_{i\mathrm{Triangle}}^{\mu\nu} + T_{i\mathrm{Self-energy}}^{\mu\nu} \ . \end{split}$$

Adding up, UV-divergences cancel and one gets:

 $T_i^{\mu
u} = \left(-i\epsilon^{\mu
u
ho\sigma}p_\sigma\gamma_
ho L
ight)A_i \ + \$ ( $\mu$ -u symmetric part)

where

$$\begin{split} A_i = &-\frac{{}^{8M_W^2}}{m_i^2 - M_W^2} \left(1 + \frac{m_i^2}{2M_W^2}\right) \int_0^1 \mathrm{d}x x (1-x) \ln \frac{D}{C} \\ &+ \frac{2M_W^2}{m_i^2 - M_W^2} \left(1 - \frac{m_i^2}{2M_W^2}\right) \int_0^1 \mathrm{d}x (1-x) \left\{ (3x-1) \mathbb{Y}_1 + \left[x^2 (1-x) p^2 + (x+1) m_i^2\right] \mathbb{Y}_2 \right\} \end{split}$$

Expanding this one sees, as expected, that there is no power suppression of large logs.



• General colour-singlet  $\eta' \rightarrow g^*(k_1)g^*(k_2)$  amplitude:

 $N^{ab}_{\mu\nu}(k_1^2,k_2^2) = -i\,F_{\eta'g^*g^*}(k_1^2,k_2^2)\,\epsilon_{\mu\nu\rho\sigma}k_1^\rho k_2^\sigma \delta^{ab}\;.$ 

• General colour-singlet  $\eta' \rightarrow g^*(k_1)g^*(k_2)$  amplitude:

 $N^{ab}_{\mu\nu}(k_1^2,k_2^2) = -i\,F_{\eta'g^*g^*}(k_1^2,k_2^2)\,\epsilon_{\mu\nu\rho\sigma}k_1^\rho k_2^\sigma \delta^{ab}\;.$ 

 $\blacklozenge$   $F_{\eta'g^*g^*}(k_1^2,k_2^2)$  is generally unknown form-factor

• General colour-singlet  $\eta' \rightarrow g^*(k_1)g^*(k_2)$  amplitude:

 $N^{ab}_{\mu\nu}(k_1^2,k_2^2) = -i \, F_{\eta'g^*g^*}(k_1^2,k_2^2) \, \epsilon_{\mu\nu\rho\sigma} k_1^\rho k_2^\sigma \delta^{ab} \; .$ 

 $\blacklozenge \ F_{\eta'g^*g^*}(k_1^2,k_2^2)$  is generally unknown form-factor

Atwood and Soni (1997), Hou and Tseng (1998) hoped that

$$F_{\eta'g^*g^*}(k_1^2,k_2^2) \approx F_{\eta'g^*g^*}(0,0) = -4\pi\alpha_s \frac{1}{2\pi^2 f_{\eta'}^1} \quad \text{even for } k_i^2 \sim m_b^2$$

• General colour-singlet  $\eta' \rightarrow g^*(k_1)g^*(k_2)$  amplitude:

 $N^{ab}_{\mu\nu}(k_1^2,k_2^2) = -i \, F_{\eta'g^*g^*}(k_1^2,k_2^2) \, \epsilon_{\mu\nu\rho\sigma} k_1^\rho k_2^\sigma \delta^{ab} \; .$ 

 $\blacklozenge \ F_{\eta'g^*g^*}(k_1^2,k_2^2)$  is generally unknown form-factor

Atwood and Soni (1997), Hou and Tseng (1998) hoped that

$$F_{\eta'g^*g^*}(k_1^2,k_2^2) \approx F_{\eta'g^*g^*}(0,0) = -4\pi\alpha_s \frac{1}{2\pi^2 f_{\eta'}^1} \quad \text{even for } k_i^2 \sim m_b^2$$

similarly to famous  $\pi 
ightarrow \gamma \gamma$  anomaly amplitude (Jacob and Wu (1989))

$$F_{\pi\gamma\gamma}(0,0) = -4\pi\alpha_{em}\frac{1}{4\pi^2 f_{\pi}}$$

• General colour-singlet  $\eta' \rightarrow g^*(k_1)g^*(k_2)$  amplitude:

 $N^{ab}_{\mu\nu}(k_1^2,k_2^2) = -i \, F_{\eta'g^*g^*}(k_1^2,k_2^2) \, \epsilon_{\mu\nu\rho\sigma} k_1^\rho k_2^\sigma \delta^{ab} \; .$ 

 $\blacklozenge \ F_{\eta'g^*g^*}(k_1^2,k_2^2)$  is generally unknown form-factor

Atwood and Soni (1997), Hou and Tseng (1998) hoped that

$$F_{\eta'g^*g^*}(k_1^2,k_2^2) \approx F_{\eta'g^*g^*}(0,0) = -4\pi\alpha_s \frac{1}{2\pi^2 f_{\eta'}^1} \quad \text{even for } k_i^2 \sim m_b^2$$

• similarly to famous  $\pi \to \gamma \gamma$  anomaly amplitude (Jacob and Wu (1989))

$$F_{\pi\gamma\gamma}(0,0) = -4\pi\alpha_{em}\frac{1}{4\pi^2 f_{\pi}}$$

• Perturbative QCD, hard scattering approach Ali and Parkhomenko (2002), Kroll and Passek-Kumerički (2002)  $\Rightarrow 1/Q^2$  suppression ( $Q^2 \equiv |k_1|^2 = |k_2|^2$ )

$$F_{\eta'g^*g^*}(Q^2)\bigg|_{Q^2 > m_b^2} \longrightarrow 4\pi\alpha_s(Q^2)\frac{f_{\eta'}^1}{\sqrt{3}Q^2} ,$$

•  $f_{\eta'}^1 \approx 1.15\sqrt{2} f_{\pi}$  known from  $\eta_1 - \eta_8$  mixing theory (Feldman and Kroll (1998))

#### **Gluing two pieces together**

#### **Gluing two pieces together**

 $\blacklozenge$  Combining amplitudes for  $b \to sg^*g^*$  and  $g^*g^* \to \eta'$ 



#### **Gluing two pieces together**

 $\blacklozenge$  Combining amplitudes for  $b \to sg^*g^*$  and  $g^*g^* \to \eta'$ 



 $\blacklozenge$  to leading orders in  $m_{\eta'}^2/Q^2$  and  $m_{b,s}^2/Q^2$  we get



#### • Check that the dependence on the infra-red cut-off $\mu^2$ is mild:

• Recall that we want to provide underlying short-distance mechanism for singletpenguin contribution to  $B \rightarrow K \eta'$  amplitude

- Recall that we want to provide underlying short-distance mechanism for singletpenguin contribution to  $B \to K \eta'$  amplitude
- We need nonperturbative matrix element:

 $\langle K | (\bar{s} \not\!\!P_{\eta'} L b) | B \rangle = ?$ 

- Recall that we want to provide underlying short-distance mechanism for singletpenguin contribution to  $B \rightarrow K \eta'$  amplitude
- We need nonperturbative matrix element:

 $\langle K | (\bar{s} \not\!\!P_{\eta'} L b) | B \rangle = ?$ 

Fitting to semileptonic B decays, as in the simple factorization approach to non-leptonic two-body B decays (Bauer, Stech and Wirbel (1987), Deandrea et al. (1993)):

$$\langle K | \left( \bar{s} \not\!\!P_{\eta'} L b \right) | B \rangle = (m_B^2 - m_K^2) F^{B \to K}(m_{\eta'}^2)$$

$$F^{B \to K}(m_{\eta'}^2) \approx F^{B \to K}(0) = 0.38 - 0.49$$

- Recall that we want to provide underlying short-distance mechanism for singletpenguin contribution to  $B \rightarrow K \eta'$  amplitude
- We need nonperturbative matrix element:

$$\langle K | (\bar{s} \not\!\!P_{\eta'} L b) | B \rangle = ?$$

Fitting to semileptonic B decays, as in the simple factorization approach to non-leptonic two-body B decays (Bauer, Stech and Wirbel (1987), Deandrea et al. (1993)):

$$\langle K | \left( \bar{s} \not\!\!P_{\eta'} L b \right) | B \rangle = (m_B^2 - m_K^2) F^{B \to K}(m_{\eta'}^2)$$

$$F^{B \to K}(m_{\eta'}^2) \approx F^{B \to K}(0) = 0.38 - 0.49$$

gives approximately

$$\operatorname{Br}(B \to K\eta') = (1-2) \cdot 10^{-6}$$

- Recall that we want to provide underlying short-distance mechanism for singletpenguin contribution to  $B \rightarrow K \eta'$  amplitude
- We need nonperturbative matrix element:

 $\langle K | (\bar{s} \not\!\!P_{\eta'} L b) | B \rangle = ?$ 

Fitting to semileptonic B decays, as in the simple factorization approach to non-leptonic two-body B decays (Bauer, Stech and Wirbel (1987), Deandrea et al. (1993)):

$$\langle K | \left( \bar{s} \not\!\!P_{\eta'} L b \right) | B \rangle = (m_B^2 - m_K^2) F^{B \to K}(m_{\eta'}^2)$$

$$F^{B \to K}(m_{\eta'}^2) \approx F^{B \to K}(0) = 0.38 - 0.49$$

gives approximately

$$\operatorname{Br}(B \to K\eta') = (1-2) \cdot 10^{-6}$$

i.e. we have the desired  $S \sim 0.5P$ .

• Digluon singlet-penguin mechanism probably substantially contributes to the  $B \to K \eta'$  decay.

- Digluon singlet-penguin mechanism probably substantially contributes to the  $B \to K \eta'$  decay.
- There is no need for new physics in this mode.

- Digluon singlet-penguin mechanism probably substantially contributes to the  $B \rightarrow K \eta'$  decay.
- There is no need for new physics in this mode.
- No new physics  $\Rightarrow$  no large direct CP violation in this mode.

- Digluon singlet-penguin mechanism probably substantially contributes to the  $B \rightarrow K \eta'$  decay.
- There is no need for new physics in this mode.
- No new physics  $\Rightarrow$  no large direct CP violation in this mode.
- What about semi-inclusive  $Br(B \rightarrow X_s \eta') = (620 \pm 20) \cdot 10^{-6}$ ?

- Digluon singlet-penguin mechanism probably substantially contributes to the  $B \rightarrow K \eta'$  decay.
- There is no need for new physics in this mode.
- No new physics  $\Rightarrow$  no large direct CP violation in this mode.
- What about semi-inclusive  $Br(B \rightarrow X_s \eta') = (620 \pm 20) \cdot 10^{-6}$ ?

#### **QCD corrections, leading logs**



## **Hiperindex**

- Overview
- Experiments
- Theory
- Rosner
- Singlet penguin
- Suppression of digluon amplitude
- Building blocks self-energy
- Triangle
- Box
- Complete amplitude  $b \rightarrow sg^*g^*$
- $\eta' g^* g^*$  vertex
- Gluing two pieces
- Cut-off  $\mu$  dependence
- Results
- Conclusions

Appendices: QCD corrections, leading logs,