

CMS detektor i fizika Higgs bozona

12. prosinac 2001. Prirodoslovno matematički fakultet - Zagreb

Ivica Puljak

Ivica.Puljak@fesb.hr

Fakultet elektrotehnike, strojarstva i brodogradnje – Split CMS kolaboracija, CERN – Ženeva

Sadržaj

LHC projekt

- Large Hadron Collider
- Detektori na LHC-u
- Fizika LHC-a

CMS detektor

- Subdetektori
- Elektromagnetski kalorimetar CMS-a
 - Eksperimentalne aktivnosti u Splitu
- Fizika CMS-a
- ➢ Primjer potrage za Higgs bozonom: simulacija H→ZZ*→4e kanala raspada
 - Simulacija signala i pozadine
 - Rekonstrukcija elektrona u CMS detektoru
 - Analiza rezultata

Prema početku

Kratka povijest

$\lambda = h / p$		$T \approx t^{-1/2}$		
10 ¹⁰ m	≤ 10 eV	>300000 Y	1900	Quantum Mechanics Atomic Physics
			1940-50	Quantum Electro Dynamics
65 10 ¹⁵ m	MeV - GeV	≈ 3 min	1950-65	Nuclei, Hadrons Symmetries, Field theories
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	>> GeV	≈ 10 ⁶ sec	1965-75	Quarks. Gauge theories
u Z e ⁺ 10 ¹⁸ m u e ⁻	≈ 100 GeV	≈ 10 ¹⁰ sec	1970-83 SPS	ElectroWeak Unification, QCD
6 Leptons v_{e} v_{μ} v_{τ}			1990 LEP	3 families
6 Quarks u c t b 3 "Colors" each quar R G B			1994 Tevatron	Top quark
Origin of masses10 ¹⁹ m	≈ 10³ GeV	≈ 10 ¹² sec	2005 LHC	Higgs ? Supersymmetry ?
Proton Decay ? 10 ³² m	≈ 10¹º GeV	≈ 10 ³² sec	Underground I	_abGRAND Unified Theories ?
The Origin of the10 ³⁵ m Universe	≈ 10 ¹⁹ GeV (Planck scale)	≈ 10 ⁴³ sec	??	Quantum Gravity? Superstrings ?

Slijedeći korak

Nove sile (simetrije)

Nove čestice

Substruktura

Super simetrija

 Higgs bozon: tj. pronaći mehanizam odgovoran za spontano narušenje elektroslabe simetrije Standarnog modela

CERN site

pp udarni presjek & Min Bias

• L = 10^{34} cm⁻² s⁻¹= 10^{7} mb⁻¹ Hz

• σ_{inel} (pp) - 70 mb → **Frekv. događaja = 7 x 10**⁸ Ha

- ∆t = 25 ns = 25 x 10⁻⁹ Hz⁻¹ → Događ./25ns =7 x 2.5 = 17.5
- Svi paketi nisu puni (2835/3564)
 → Događ./sudaru = 22

Uvjeti rada (sažetak): 1) "Dobar" događaj koji sadrži raspad Higgsa + 2) ≈ 20 "loših" (minimum bias) interakcija

Sudari na LHC-u

Proton-Proton Protona/snopu Energija snopa Luminozitet

2835 paketa/snop 10¹¹ 7 TeV (7x10¹² eV) 10³⁴ cm⁻² s⁻¹

Frekvencija sudara paketa

40 MHz

Frekvencija sudara protona 10⁷-10⁹Hz

Frekvencija "nove fizike" .00001 Hz

Selekcija događaja: 1 u 10 000 000 000 000

Raspad Higgs bozona u 4 miona

Slijedeći korak u hadronskim sudarima

U slijedećoj generaciji sudarača potrebna potraga za masivnim objektima preko širokog masenog područja.

Sudarači hadrona mogu omogućiti fiziku na visokim energijama na nivou partona i na visokom luminozitetu, ali uz "žrtvovanje" čistih eksperimentalnih uvjeta.

Izazovi na LHC-u:

- Detektori
- Eksperimenti
- Selekcija događaja

Detektori na LHC-u

Svaki sloj identificira čestice stvorene u sudaru i omogućuje mjerenje njihove energije ili količine gibanja

pp eksperimenti na LHC-u

ATLAS A Toroidal LHC ApparatuS CMS Compact Muon Solenoid

Eksperimenti za teške ione i B fiziku na LHC-u

ALICE A Large Ion Collider Experiment

The ALICE Collaboration proposes to build a dedicated heavy-ion detector to study the physics of strongly interacting matter at extreme energy densities, where the formation of a new phase of matter, the quark-gluon plasma, is expected.

LHCb

(Study of CP violation in B-mesc decays at the LHC collider)

Fizika na LHC-u

proton-proton sudari:

- Potraga za Higgs bozonom u SM-u do oko 1 TeV,
- Potraga za Higgs bozonima u SUSY (h⁰, H⁰, A⁰, H[±]),
- Potraga za skvarkovima i gluinima do oko 2,0 TeV,
- Potraga za sleptonima, charginima, neutralinima do oko 0,3 TeV,
- Potraga za novim bozonima: W', Z' do oko 4,5 TeV,
- Alternativni mehanizmi lomljenja elektroslabe simetrije,
- Detaljna istraživanja top fizike,
- Testovi QCD-a,
- Testovi konstanti vezanja,
- CP narušenje u B sektoru,
- Mjerenje totalnog udarnog presjeka
- Potraga za dodatnim dimenzijama
- Fizika teških iona: od O-O do Pb-Pb
 - Potraga za quark-gluon plazmom

Udarni presjeci na LHC-u

The Compact Muon Solenoid (CMS)

The Compact Muon Solenoid

Chambers (DT) Chambers (RPC)

Resistive Plate Chambers (RPC)

Izazovi na LHC-u

- Broj elektroničkih kanala u detektoru O(10⁷)
 - ➔ Potreba za velikim brojem međuspojeva
- > 20 sudara svakih 25 ns
 - ➔ Potreba za velikim protokom informacija
- Informacije iz subdetektora trebaju odgovarati jedne drugima
 - ➔ Potreba za sinhronizacijom elemenata detektora svakih 25 ns
- > U nekim slučajevima vrijeme leta > 25 ns
 - ➔ Potreba za identifikacijom sudara paketa
- Maksimalna frekvencija spremanja podataka 100 Hz
 - ➔ Odbacivanje većine interakcija
- Radi se "on-line" (nemoguće "se vratiti" i ponovo razmotriti događaj)
 - Potreba za nadziranje selekcije

CMS – različiti pogledi

Detektor	Broj kanala	Senzori
1) Verteks	80000000	Pikseli
2) Tracker	16000000	Silicijske mikropruge
3) Preshower	512000	Silicij
4) Kalorimetri	125000	ECAL scintilacijski PbWO, kristali
,		HCAL plastični scintilatori, bakreni "sandwitch"
5) Mionski	1000000	Drift Tube Chambers (DT)
,		Cathode Strip Chambers (CSC)
		Resistive Plate Chambers (RPĆ)

Triger/DAQ

Zadatak:

Pogledati (skoro) sve p-p sudare, te odabrati samo interesantne. Zatim sakupiti podatke iz svih detektora i spremiti ih za off-line analizu. P.S. Za razumnu količinu CHF.

Trigger je funkcija

Budući da svi podaci iz svih detektora nisu odmah dostupni i funkcija je vrlo kompleksna, T(...) se izračunava u nekoliko koraka koji se zovu TRIGER RAZINE.

Triger razine u CMS-u

- Frekvencija sudara 10⁹ Hz
- Razina 1 selekcija događaja 10⁵ Hz
 - Identifikacija čestica (e, μ velikog p_T, mlazovi, nedostajuća energija)
- Razina 2 selekcija događaja 10³ Hz
 - Rekonstrukcije događaja (raspad Z, W, ...)
 - Razina 3
 događaji se zapisuju, 10 100 Hz
 - Identifikacija fizikalnih događaja

Tehnološki trendovi (Mooreov zakon)

Superkompjuteri danas

Preuzeto sa: http://now.cs.berkley.edu

Elektromagnetski kalorimetar CMS-a

ELECTROMAGNETIC CALORIMETERS

Elektromagnetski kalorimetar CMS-a

Lavinska fododioda (APD)

Eksperimentalna mjerenja u Splitu

- Izgrađen je sustav za mjerenje inverzne struje 10 lavinskih fotodioda (APD) istovremeno uz praćenje temperature, tijekom godine dana ili duže.
- Gradi se sustav za mjerenje odziva APD-ova na pulsno svijetlo s kontrolom temperature.

Uniformnost APD-a: rezultati

2000/09/25 07. APD 3298, Uniformity response for GREEN LED (520nm) 800 $\begin{array}{c} 450 \\ 400 \end{array}$ ŽŎŎ $\frac{150}{100}$ 0 Ο x y (step 200 mícrons) x y (step 200 microns) 2000 4000 2000 Ο x y (step 200 microns) x y (step 200 microns)

CMS fizika: B & Supersimetrija

The decay B or $B^{o} \rightarrow J/\psi \ K^{o}_{S}$ presents a very clean experimental signature. The particle content (B or B^o meson) that gave the decay can be determined from a muon from the second b-flavored hadron in the event. An asymmetry in the two rates (B s B^o) would signal CP violation. This would be the first tim that CP violation is observed outside the neutral kaon system

SUSY Higgs bosons n the MSSM there are 5 Higgs bosons.^o,hH^o, A^o and H^t decaying through a variety of decay modes to γ , e^t, μ^{t} , τ^{t} and jets in final states. Above: an example of a SUSY Higgs decay to $\tau \tau$ in CMS. On the right is the reconstructed $\tau \tau$ mass spectrum

Sparticles Production of sparticles may reveal itself though some spectacular kinematical spectra, with a pronounced "edge" in the, ⁺, ⁻ mass spectrum reflecting $\chi_2^0 \rightarrow$, ⁺, ⁻ χ_1^o production and decay. An example of such a spectrum in inclusive , ⁺, ⁻ + E^{miss} and of a 3, [±] production event are shown below

Potraga za Higgs bozonom

 $m_{H} = 115 \, {\rm GeV}$

- Direktna potraga, LEP II: nagovještaj (3 σ više događaja signala od pozadine)
- Higgs bozon na LHC-u
 - Potvrditi postojanje Higgs bozona od 115 GeV ili
 - Pronaći Higgs bozon do mase od 1 TeV
- Trenutno: potraga na Tevatronu

Produkcija i raspad Higgs bozona

 Oko 2 000 000 Higgs bozona s massom biti će proizvedeno na LHC-u za 10⁵ pb⁻¹ (1 godina rada na nominalnom luminozitetu)

- > BR(H→ZZ*) u tom području \approx 2 10 %
- > BR(Z \rightarrow ee)² = 3,4%² = 0,11%
- > Očekuje se oko 40 do 200 događaja H→ZZ*→4e za 10⁵ pb⁻¹

Fizika Higgs bozona na CMS-u

Higgs to 2 photons (M_{H} < 140 GeV).

 $H^{0} \rightarrow \gamma \gamma$ is the most promising channel if M_{H} is in the range 80 – 140 GeV. The high performance PbWO₄ crystal electromagnetic calorimeter in CM has been optimized for this search. The $\gamma \gamma$ mass resolution at $M\gamma \gamma \sim 100$ GeV is better than 1%, resulting in a S/B of -1/20

Higgs to 4 leptons (140 < M_{H} < 700

GeV). In the M_{H} range 130 - 700 GeV the mospromising channel is $H^{0} \rightarrow ZZ^{*} \rightarrow 2$, $^{+}2$, $^{-}$ or $H^{0} \rightarrow ZZ \rightarrow 2$, $^{+}2$, $^{-}$. The detection relies on the excellent performance of the muon chambers, the tracker and the electromagnetic calorimeter. For M_{H} Š 170 GeV a mass resolution of ~1 GeV should be achieved with the combination of the 4 Tesla magnetic field and the high resolution of the crystal calorimeter

Higgs to 2 leptons+2 jets $(M_{H} > 500)$

GeV). For the highest M_H , in the range 0.5 - 1 TeV, the promising channels for one year at high luminosity are $H^0 \rightarrow ZZ \rightarrow ,^+,^- vv$, $H^0 \rightarrow ZZ \rightarrow ,^-$,^ jj and $H^0 \rightarrow W^+W^- \rightarrow ,^\pm v jj$. Detection relies on leptons, jets and missing

transverse energy (E_t^{miss}), for which the hadronic calorimeter (HCAL) performance is very important

 $H \rightarrow ZZ^* \rightarrow 4e$: pozadina

Glavni pozadinski procesi

$$ZZ^*/\gamma^* \to 4e$$

- tzv. ireducibilna pozadina: kinematičke karakteristike slične signalu
- jedina bitna razlika: ravna razdioba invarijante mase 4 elektrona
- Nakon preselekcije: oko 270 očekivanih događaja za 10⁵ pb⁻¹

$$t\bar{t} \rightarrow 4e$$

- Nakon preselekcije: oko 2700 očekivanih događaja za 10⁵ pb⁻¹
- Glavne karakteristike: "mekši" elektroni, nepostojanje Z i Z* u međustanju, neizolirani elektroni

$$\frac{Zb\overline{b} \rightarrow 4e}{}$$

- Nakon preselekcije: oko 2000 očekivanih događaja za 10⁵ pb⁻¹
- Glavne karakteristike: "mekši" elektroni, nepostojanje Z* u međustanju, barem 2 neizolirana elektrona

Monte Carlo simulacije

Monte Carlo simulacije:

fizikalnih procesa

produkcija čestica u p-p sudaru, raspad, hadronizacija, početni i konačni pljusak čestica ... software: PYTHIA, ISAJET, HERWIG, CompHEP, PHOTOS

• interakcija čestica s materijalima u detektoru software: GEANT

koriste se za:

- dizajn i optimiziranje detektora,
- razvoj algoritama za rekonstrukciju fizikalnih objekata (elektron, foton, mion, snop čestica ...) u detektoru
- provjeru experimentalnih rezultata kada detektor započne s radom

Proces simulacije

Simulacija fizikalnih događaja

- Udarni presjeci i omjeri grananja: najnoviji teorijski proračuni (uključuju korekcije viših redova)
- > Topologija čestica u konačnom stanju: Monte Carlo generatori
- Usporedba rezultata s drugim teorijskim modelima: PYTHIA: parton shower model, ResBos: resumacija

Simulacija odziva detektora

Softverska" konstrukcija detektora s kompletnom geometrijom i svim poznatim (relevantnim) detektorskim efektima (magnetsko polje, interakcije čestica s materijom, elektromagnetski pljusak čestica, ...)

pljusak čestica u elektromagnetskom kalorimetru

Rekonstrukcija događaja

Primjer: rekonstrukcija elektrona

- Rekonstrukcija tragova u unutarnjem detektoru tragova
- Rekonstrukcija nakupina kristala u elektromagnetskom kalorimetru
- Spajanje tragova i nakupina, te procjena količine gibanja elektrona kombinirajući sva dostupna mjerenja

Problem: materijal u detektoru tragova ⇒ bremsstrahlung!

- Razvijeni algoritmi za rekonstrukciju elektrona uzimajući u obzir specifične detektorske efekte (bremsstrahlung u materijalu detektora tragova, geometrijski efekti, magnetsko polje ...)
- Potpuna migracija na nove tehnologije Objekto programiranje i C++, objektne baze podataka, novi alati za analizu podataka - ROOT ...

Rekonstrukcija tragova

- Zahtjevi za rekonstrukciju tragova elektrona:
 - velika efikasnost
 - izvrsna preciznost

Rekonstrukcija u ECAL-u

- Identificirati nakupinu (cluster) kristala u kojima je elektron/foton ostavio svoju energiju i procijeniti tu energiju
- Zahtjevi na algoritam za traženje nakupina:
 - Nakupina što manja da se smanji utjecaj šuma
 - Sposobnost razlikovanja bliskih čestica
 - Algoritam što fleksibilniji

Razvijen posebni dinamički algoritam koji

- Procjenjuje energiju uzimajući u obzir predviđanje deponirane energije u kristalima.
- Omogućuje smanjivanje efekta bremsstrahlunga

Rezovi na poprečnu količinu gibanja

```
p_T^{e_1} > 20 \text{ GeV}
p_T^{e_2} > 15 \text{ GeV}
p_T^{e_3} > 10 \text{ GeV}
p_T^{e_4} > 7 \text{ GeV}
```


$$M_{Z} - 13 \,\mathrm{GeV} < \mathrm{m}_{\mathrm{e}^{+}e^{-}} < M_{Z} + 6 \,\mathrm{GeV}$$

Izolacija promatramo nabijene čestice oko elektrona

Elektron je izoliran ako oko njega nema niti jednog nabijenog traga s p_T > 2,5 GeV u konusu $R = \sqrt{\Delta \eta^2 + \Delta \varphi^2} = 0,2$

Rezultat rezova na nivou generatora događaja (akceptance, relativno s obzirom na preselekciju)

Rez	p _⊤ elektrona	M _{Z*}	Mz	Izolacija		
	pT>20,15,10,7 GeV	15 < m _{ee} <80 GeV	M _Z -13 GeV < m _{ee} < M _Z +6 GeV	Bez nabijenih tragova s pT>2,5 GeV u konusu R=0,2	Acc. Tot.	
m _H = 130 GeV	0,94	0,90	0,82	0,93 (0,80)	0,64 (0,55)	
m _H = 150 GeV	0,98	0,95	0,91	0,94 (0,80	0,80 (0,67)	
m _H = 170 GeV	0,99	0,96	0,94	0,94 (0,80)	0,84 (0,71)	
ΖΖ */γ*	0,91	0,81	0,91	0,95 (0,81)	0,63 (0,54)	
tt	0,87	0,64	0,70	0,014	0,0055	
Zbb	0,77	0,38	0,90	0,067	0,018	

Brojevi u zagradama odgovaraju visokom luminozitetu

$H \rightarrow ZZ^* \rightarrow 4e$: rezultati (1)

- Invarijantna masa 4 elektrona (na nivou MC generatora)
 - Signal: Breit-Wigner + internal bremsstrahlung
 - Pozadina: ravna distribucija
 - Zahtjev za što boljom rezolucijom u mjerenju količine gibanja elektrona

Rekonstrukcija mase Higgs bozona koristeći razvijene algoritme

 $H \rightarrow ZZ^* \rightarrow 4e$: rezultati (2)

Broj događaja i signifikantnost

Moguća poboljšanja:

- Poboljšanje efikasnosti nalaženja tragova (ovdje 64% za 4 el.)
- Potraga za fotonima izračenim internim bremsstrahlungom

Uključivanjem miona, broj događaja poraste oko 4 puta, a signifikantnost za faktor 2

Zaključak

LHC će započeti sa radom 2006. godine zajedno sa svojim detektorima.

- CMS detektor je trenutno u fazi izvedbe. Većina narudžbi prema industriji je već obavljena i dijelovi detektora već konstruirani.
- CMS će pronaći Higgs bozon do mase od 1 TeV, ili potvrditi indikaciju LEP II za Higgs bozon od 115 GeV.
- ≻ Kroz H→ZZ*→4e kanal Higgs bozon će se naći na CMS-u, ako mu je masa između 125 GeV i 2 M_z.
- > Očekuje nas vrlo zanimljiva fizika na LHC-u.