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Efficient and accurate algorithms for the calculation of the multipole response of deformed atomic
nuclei are very important tools in nuclear structure, especially for large scale calculations. In this paper
we present an implementation of the algorithm based on the expansion of the response function
in terms of the Chebyshev polynomials in conjunction with the kernel polynomial method for a
very efficient calculation of the quasiparticle random phase approximation response function. Several
test calculations are performed in order to asses the applicability and feasibility of this algorithm,
already used successfully in the field of computational solid state physics, in various nuclear structure
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1. Introduction

Nuclear energy density functional framework provides an ac-
curate description of ground-state properties and collective excita-
tions of atomic nuclei, from relatively light systems to superheavy
nuclei, and from the valley of B-stability to the particle drip-
lines [1-4]. An important topic for this line of research are studies
of multipole response in nuclei far from stability with possible oc-
currence of exotic modes of excitation [5,6]. Theoretical studies of
the collective vibrations in heavy nuclei are nowadays performed
routinely within the framework of the quasiparticle random phase
approximation [7,8] (QRPA). Since the computational cost of the
matrix implementation of the QRPA increases rapidly for deformed
heavy nuclei, a finite amplitude method [9] (FAM) for solving the
QRPA problem was developed and successfully applied in a num-
ber of studies [10-19]. Here we would like to take a step further
and propose an implementation of the algorithm based on the ex-
pansion of the response function in terms of the Chebyshev poly-
nomials in conjunction with the kernel polynomial method (KPM)
for a very efficient calculation of the QRPA response function over
a very broad energy range which could be very useful for large
scale calculations. Kernel polynomial method originally developed
in solid state physics [20] has been successfully used for calcu-
lating the Green’s functions of a superconductor [21] and recently
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for controllable reconstruction of the spectral density in a strongly
correlated many-body systems [22].

The paper is organized as follows. In section 2 we briefly re-
capitulate the quasiparticle random phase approximation and for-
mally state the problem we would like to solve. Section 3 includes
detailed description of the implementation of the Chebyshev ker-
nel polynomial method for efficient calculation of the quasiparticle
random phase approximation response function. In Section 4 we
provide several test calculations to illustrate the feasibility and per-
formance of the proposed method. Short summary is provided in
section 5 and further mathematical details can be found in appen-
dices.

2. Quasiparticle random phase approximation

In this section, we recapitulate the basic formulation and prop-
erties of the quasiparticle random phase approximation (QRPA)
as a small amplitude limit of the time-dependent Hartree-Fock-
Bogoliubov theory. For more details we refer the reader to Ref. [7].
Our starting point is the energy density functional &[p, «, k*]
which depends on the density matrix and pairing tensor:

P = (@IEfe|D), K= (D& D). (1)
|®) denotes the HFB vacuum and the operators (GIT,EI) belong to
the particle basis. Indices k and [ in Eq. (1) denote the states in
the adopted basis, e.g. the harmonic oscillator basis. The single-
particle Hamiltonian h and the pairing field A are calculated as


https://doi.org/10.1016/j.cpc.2022.108477
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2022.108477&domain=pdf
mailto:tniksic@phy.hr
https://doi.org/10.1016/j.cpc.2022.108477

A. Bjelci¢, T. Niksi¢ and Z. Drmac

a variation of the energy density functional £ with respect to the
density matrix o and the pairing tensor «*, respectively:

&
ke

&
hulp, K, k* 1= —, Aulp, K, k*1= (2)
00k

The particle operators E}L, ¢; are connected to the quasi-particle op-
erators &L, &, by the Bogoliubov transformation:

&L = Z (Ulua?- + VW61>' (3)
1

The columns w of the Bogoliubov matrices U and V are obtained
by solving the HFB equation:

h—2l A Uy Uy
[—A* —h*+u][vu]_5“[vu]' @
E, are the quasiparticle energies, and the chemical potential A is
determined by the particle number subsidiary condition.

Next, we assume that the nucleus is subjected to a weak exter-
nal field of a given frequency:

Fo =n (F@e ™ + Fletr), (5)

where 71 denotes small real parameter. In the quasiparticle basis
F(w) reads:

. 1 L o
HOEEDS (F@afal + F2 @avd, )
v
+ 3 FiL@afén. (6)
nv

We notice that the second summation in Eq. (6) does not con-
tribute in the linear approximation. The Bogoliubov transforma-
tion of the external field, i.e. explicit expressions for the matrices
F20,(w) and FJ (@), can be found in Ref. [7]. The time evolution
of the quasiparticle operators is governed by the time-dependent

Hartree-Fock Bogoliubov equation (TDHFB):

1961, (D) = [H(t) +E@). &M(t)] , (7)
with:

& () = (G + 86, (D) et (8)
84, () =0 Y &l (Xou(@e ™ + Y], @e "), 9)

where E,, is the quasiparticle energy introduced in Eq. (4). X, (w)
and Y,y (w) denote the QRPA forward and backward amplitudes,
respectively. The external field F (t) induces oscillations of the den-
sity and pairing tensor around the ground state values with the
same perturbation frequency @ and these in turn produce the in-
duced fields in the single-particle Hamiltonian and pairing field.
Finally, the HFB Hamiltonian can also be decomposed into the
ground-state and oscillating part.

The X(w) and Y(w) amplitudes are calculated by solving the
linear response equation:

A B 1 0 X(w) F2(w)
([ #]-elo S)[¥o]=-[F] oo

where X(w), Y (w), F?(®), F%?(w) are the corresponding vector-
ized matrices. Furthermore, the left-hand side of Eq. (10) leads to
the QRPA eigenvalue equation when the right-hand side is set to
zero:
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The QRPA matrices A and B are calculated from second varia-
tional derivative of the energy density functional £ with respect
to the density matrix and pairing tensor. The matrix formulation
of the QRPA problem becomes computationally very demanding,
especially for applications to deformed atomic nuclei. The reason
is the large number of quasiparticle states involved in the calcula-
tions which makes the dimension of the QRPA matrix rather large.
This means that one first has to calculate large number of matrix
elements and subsequently diagonalize huge QRPA matrix. Since
neither of these two tasks is feasible in large-scale calculations in-
volving deformed nuclei, a number of efficient methods to solve
the QRPA problem have been formulated [23,24]. Among them
the finite-amplitude method (FAM), first proposed in Ref. [9], has
proved very successful in numerous applications [10-19]. Within
the framework of the finite-amplitude method, one can avoid ex-
plicit construction and diagonalization of the QRPA matrix and
instead iteratively solve the linear response problem:

(Ep + Ev — @) Xy (@) + 8H2), () = —F25 (@), (12)
(Ep + Ev + @) Yyu (@) + 8HY, () = —F ) (). (13)

5H/23)(a)) and SHELZv(a)) are the matrix elements of the induced
HFB Hamiltonian in the quasiparticle basis. In principle, by ex-
panding the §H2%(w) and §H%(w) in terms of the amplitudes
X(w) and Y (w), one could show that Eqs. (10) and (12)-(13) are
equivalent. In order to avoid divergences at the positions of the
QRPA poles Q;, the frequency in Egs. (12)-(13) is set complex, i.e.,
w — o + iy. Small imaginary part y corresponds to the smear-
ing width. By employing the X(w) and Y(w) amplitudes, we can
calculate the response function:

dB(F, w) 1 .

=——ImS(F,w), (14)
dow T

with strength function defined as:

S By =Y (FA@ Xuw(@) + FR @ Yu@).  (15)

n<v

For a more complete description of the finite amplitude method
for solving the quasiparticle random phase approximation we re-
fer the reader to Ref. [12] and references cited therein. Further-
more, in this work we will assume that the excitation operators
ng) (), Fﬂzv (w) do not depend on the frequency o, i.e. Fﬁ% (w) =
FZ5, and F% (w) = Fp3,. In practical calculations this assumption is

I
virtually always fulfilled.

2.1. Properties of the QRPA matrix

Before we formally state the problem, we would like to col-
lect some well known technical results related to the properties
of the QRPA matrices [8,7]. Regarding the notation, throughout the
paper we use A" for Hermitian conjugate matrix, AT for trans-
posed matrix and A* for element-wise complex conjugate matrix
of arbitrary matrix A € C™*", We also use MATLAB notation for
diagonal matrices, i.e. if x € C" is a vector, then diag[x] € C™*" is
a diagonal matrix having elements of the vector x as diagonal ele-
ments, i.e. diag[x]; j = & jx;, for i, j=1,...,n. If the QRPA matrix

A B |. - . . ..
[B* A*] is positive-definite, which corresponds to a minimum

in the energy surface of the HFB solution, then there exist positive
eigenfrequencies Q2; > 0 and QRPA amplitudes X', Y' € C" which
are the generalized eigenpair of the QRPA matrix:
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A B][x! Xi
EREEI]

with generalized normalization and closure relations:
DX Xl = (Y)*Y] =51 and

n=1

DXL (XD = (Y)Y =60 (17)
i=1

The detailed proof of the previous statement is included in the

Appendix A as Proposition 1. Next, we give a straightforward but
useful result related to the polynomial P € C[x] with complex co-

b Al 2

] € C2%2n pe q positive-definite QRPA matrix

efficients evaluated at a matrix:

A B

B* A*
and X, Y € C" " QRPA amplitudes matrices. Furthermore, let € R"*"
be a diagonal matrix containing the QRPA eigenfrequencies. Then for any
polynomial P € C[x] the following equation holds:

1 0][A B
*([o 4[5 #])
X YI[P+Q) 0 X y<1!
:[Y X*][ 0 P(—Q)][Y x*] ' (18)

*

Lemma 1. Let

Proof. Equation (A.5) shows that the matrix [if ;*} is invert-

ible. Therefore, Eq. (A.4) can be written as:

1 ol[A B]_[x vy*][+2 o [x v*]'
0 —1||B* A ||y x| 0o —af|ly x|

(19)
which immediately yields Eq. (18). O

Finally, we recall two elementary facts which will be useful.

Lemma 2. Let A € C™" be a complex symmetric matrix, i.e. AT = A.
Then for any x € C™ there holds:

Im [xTAx] — x' Im[A]x. (20)
Proof. Writing A = A; + Aji, for A;, A; € R™" real symmetric and
X = xr + x;i for x;, x; € R", one trivially sees:

Im [XTAX] =x! Aixe + x] Aixi +xT Arxi — x] Arxy, (21)
X' Im[A]x = xTA,-x = erA,-xr +xiTAixi + (erA,-x,- — x,-TA,-xr) i. (22)

Since AT = A; and AT = A;, there holds: x! A;x; = x! A;x; and
x! Aix; = x| Aix;, which yields Eq. (20). O

Lemma 3. Let f : [—1, +1] — R be continuous function, a > 0 and let
Q € (—a, +a). Then there holds:

+a
. y/m _
ylin8+/f(w/a) mdw— f(Q/a). (23)

Proof. Follows from a restricted version of §(x) = lim, _, o+ X;’ gz
to [—a, +a] domain. O
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2.2. Problem statement

Next, we give a detailed description of the problem that we
would like to solve in this paper. Suppose we have A, B € CNo>Np
satisfying AT = A, BT = B, such that the QRPA matrix:

[;* /1‘3*] € C2Npx2Ny (24)

is positive-definite. Furthermore, let us suppose that two vectors
F20 F02 ¢ CNP are given. For w € R and y > 0 we denote the
complex frequency w, = w + yi in the upper complex plane. Let
the vectors X(wy), Y(wy) € CNr be the solution of the following
linear system:

A B I 0 X(w,) F20
(Lo &]-olo SDlen]=-[fe] oo

We define the strength function S: R +R*i— C as:

207F
S(wy) = [ioz} [égfo)m (26)

Our task is to calculate the response function g—g :R — R defined

as:

B _ 1

First, we will show that the strength is well defined, i.e. that a ma-
trix in Eq. (25) is invertible for any w, . Later, it will be clear that
the limit in Eq. (27) exists in the weak-* topology as a limit of se-
quence of distributions. According to the Proposition 1, there exist
X,Y e CNexNp and @ = diag[Qi]?g’l e RNo>*Np such that ©; > 0
foralli=1,...,N, and:

HRIERSE R S R

(28)

x vV 1 ol[x v*7'[1 o
[Y x*] :[0 —1] [Y x*] [o —l] (29)

Thus, one can easily see that for any w, in the upper complex
plane, the matrix:

[ A]erls )
Lo A1 %)

—1
+Q-w,0 0 X v
X[ 0 —Q—wyl][Y x*] (30)

is invertible, rendering S(w, ) well defined with formula:
X vY* T F20 t
S@p=={ly x+| |p2|) >
(Q—w, 1)~ 0
x 4 1| x
0 (2+wyl)

7T 20
A ¥I[=)

According to Lemma 2, one immediately obtains:
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T
1 X Y* ¥ F20
_;[m[S(a)),)]:<|:Y x*] [FOZD x

ST S

—Q

X[(w (;+y vz }X
(0+RQ)%+y2

#7171 R20
X ([i,( ;*] [502})’ (32)
where it is now clear that the limit of distributions in Eq. (27)
exists, i.e. the response function ‘“Z% is well defined distribution
on R.

In direct implementations, the QRPA matrix is constructed ex-
plicitly and subsequently diagonalized by solving Eq. (28). The re-
sulting matrices X, Y and Q are used to calculate the strength
according to Eq. (31) for arbitrary smearing parameter y > 0. The
main advantage of this approach is that one can use the calculated
matrices X, Y and © to find the response for arbitrary excita-
tion operator F. This is analogous to solving the linear system of
equations Ax = b, in the case when we know the spectral decom-
position: A = SAS~!. Then for any right-hand side vector b, one
can easily find the solution: x =SA~'S~'h. However, because this
approach is computationally prohibitive for deformed atomic nu-
clei due to the large dimension of the QRPA matrix (24), in practice
one often solves the system of linear equations (25) for prese-
lected excitation operator F and smearing parameter y > 0. In this
case, one only obtains the shape profile (w, S (w;)) of the strength
function S(w, ), but for most applications this is quite satisfactory.

A very successful approach for solving the linear response prob-
lem is the finite amplitude method, described at the beginning of
this section. When solving the linear system Eq. (25) for fixed fre-
quency wy, one usually uses an iterative solver which does not
require the access to the full QRPA matrix, but rather only requires
the access to the linear mapping:

X A B X . N
[y]'_) [B* A*][y]’ for given x,y € C"p. (33)

This mapping, equivalent to the FAM equations (12)-(13), can ac-
tually be constructed without explicit calculation of the residual
nuclear interaction (i.e. without explicit construction of A and B
matrices), which makes the FAM method convenient in practical
implementations. Since the main goal of this paper is to improve
the performance of the existing FAM solvers, we will only assume
the access to the mapping (33). We will show that one can ob-
tain an accurate approximation to the response function % in
fewer number of FAM iterations. The proposed method is easy to
implement in the existing FAM solvers with minimum additional
effort.

3. Implementation of the kernel polynomial method for
calculating the QRPA response function

3.1. Chebyshev expansion

First, we assume that all QRPA eigenfrequencies (j:Q,');V:p] are
contained in the finite interval (—2}, +2}). The parameter j > 0
is referred to as the bounding frequency. Next, we fix the smearing
parameter y > 0, and since the set of Chebyshev polynomials:

Tn(x) = cos(narccos(x)), x € [—1,+1], n € Np, (34)

form an orthonormal basis, we expand the function ’71 Im[S(wy )]

for w € (—Qp, +2p) as the following Chebyshev series:
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—1
—Im[S(wy)] =

+00
2/ w
2 S (L). o
le) — C()2 n=0 b
)

where ;" € R are the expansion coefficients. Using the orthogo-
nality of the Chebyshev polynomials:

+1

Tn(X) T (x) T

ﬁd}( = 5(1 + (Sn’())(sm!n, m,ne N(), (36)
one easily obtains the formula for the expansion coefficients:

A
(62 - w
=— — Im[S(w,)]1Tp | — | dw. 37
MUn ]+5n,0/ = [S( y)]n<Qb> (37)
-

From Eq. (32) and using (29) we easily see:

1 -FZO T X Y*
7 Im[S(wy)] = _F02 Yy x* X
B v/m 0
—Q)? 2
x| @ (; +Y v/ :| X
L (0 +Q)2+y?
r -1 20
X Y* F
X % X*j| |:_F02:| s (38)

and thus, according to Lemma 3, the following equation holds:

T
. ) _ 1 F20 X Y*
yli>n(}+ M~ = 1 +8n,0 |:F02 Y X* X

Q
T(+&) o
X o X
0 Tn(—Q—b)
-1
X Y* FZO
X|:Y X*:| |:—F02i|’ (39)
which after using Lemma 1 transforms to:
fn = lim
y—0t
_ v o)A elfa B,
T 14680 [ F2] "\ @, |0 —1][B* A*
1 07[F®
i

If we truncate the series (35) up to 2Nj; + 1 € N coefficients, after
taking the limit ¥ — 0%, one obtains the approximate expression
for the response function:

2Nj¢

dB(w) 2/ Z < w >
~ unTn | =), for w € (=, +82p),
do \/ Qﬁ —w? n=0 Qb
(41)

where the coefficients u, € R are defined in Eq. (40). Notice that
n € R are indeed real because one can easily see that matrices:

1]1 0 A B I 0 IN, x2N
2 2D e e

are Hermitian. Let us define a sequence of vectors (|an))nen, S
C2Np as:

1 0]l A 0 20
won(&o 2 AL A[E] @
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Using To(x) =1 and T1(x) = x, the first two terms |ap), |o1) €

C2N» are equal to:

o) = F0 and|a>~—ll 0l[A B[ F®

0/ -= —F02 1/ = Qb 0 —I B* A* _FOZ s
(44)

while the Chebyshev recursion: T,(x) = 2xTp_1(x) — Tp_2(x), for
n > 2, can be used to find other terms |«y) for n > 2, recursively:

211 0 A B
|an> = Q_b [0 _I} [B* A*] |05n7]) - |an*2>' (45)
Since there holds:
1 [F07f
un=m |:Fozi| lon), for ne N, (46)
n,

we can initialize the coefficients (o, ;11 and use recursion (45) to
find the higher coefficients u,, n > 2, i.e. as we calculate the nth
vector |a,), we can calculate the nth coefficient ©,. However, we
can do better utilizing two identities:

Ton(®) =2Th()Tn(x) =1 and Top—1(x) = 2Tn—1 () Tn(x) — X.

(47)

Then, one can easily show using Hermitian property of matrices
(42) that there holds:

I 0
Man—1 = 2(ctn—1] [0 —l] lotn) — 1, neN, (48)

I 0
,Uv2n:2(05n||:0 _Ii||05n>—2,U«0, neN. (49)

Thus, if we initialize |at), |a1) € C?Nr and po, i1 € R, during the
recursion (45) for each new |a;) we can obtain two coefficients
HMon—1 and pon. Notice that for calculation of |ag), |ot1), ..., |any),
we need to evaluate the mapping:

HEERIM

exactly Nj; times, which will yield the coefficients o, i1, ...
required in the expansion (41).

> 2N

3.2. Kernel polynomial method

It is well known and can be seen from Eq. (38) that the re-
sponse function % can be written as a sum of weighted delta
functions centered at eigenfrequencies ;. Experience shows that
a simple truncation of Chebyshev series (41) leads to poor pre-
cision and oscillatory behavior, also known as Gibbs oscillations,
near points where the expanded function is singular or discontin-
uous which in this case is near QRPA poles ££2;. This problem has
been studied in details [20] and a common procedure to damp
Gibbs oscillations relies on the modification of the coefficients in
the Chebyshev expansion:

f(X)% Tn(x)a XE(—1,+1), (5])

2/m !
«/1/ x2 Z Hn
n=0
With a simple transformation of expansion coefficients: w, —
ungn N for appropriate coefficients: g ,ggN),...,gl(VN)l, called the
kernel coefﬁc1ents One can represent thls transformation as a con-
volution of f(x) with an appropriate kernel Ky(x, y). Details can
be found in Ref. [20] and here we only introduce three kernels
which are most relevant for our work.
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Fig. 1. (Color online) Gaussian function of width o = /N, for N = 64 (red circles)
compared to Jackson kernel-modified Chebyshev approximation of delta function of
order N = 64 (blue solid curve). For reference, kernel-unmodified Chebyshev ap-
proximation of delta function of order N =64 is also shown (black dashed curve).

First we would like to present the Jackson kernel, designed to
minimize the kernels root mean square (RMS) width. The Jackson
kernel is defined as:

(N—n+1)C05(N+1>+51“<N+1)C°t(N+1)

(N)
ackson) :=
d )= NT1

(52)

One can show that if one expands the delta function §(x) in Cheby-
shev series (51), i.e. calculates the coefficients w, corresponding
to f(x) = 8(x), followed by modifying the coefficients w, with
Jackson kernel: u, — un gnN) (Jackson), then the obtained kernel-
modified Chebyshev approx1matlon (RHS of Eq. (51)) visually re-

sembles to a Gaussian e 2a2 of width o = %. In Fig. 1, we

ﬁ
plot a Gaussan of width o = %, for N = 64, together with Jack-

son kernel-modified Chebyshev approximation of delta function of
order N = 64. We also plot the kernel-unmodified Chebyshev ap-
proximation of delta function as a reference. We can see that KPM
reduces the Gibbs oscillations, and the Jackson kernel-modified ap-
proximation resembles to a Gaussian of an appropriate width.
Second kernel that we present is the Lorentz kernel defined as:

sinh (A(1 — n/N))
sinh (1)

where the value of the free parameter A > 0 should be chosen to
ensure a satisfactory compromise between good resolution (small
values of the parameter 1) and sufficient damping (large values of
the parameter 1). Depending on the application, the value of the A
parameter is usually chosen between values 1 and 5. In this case,
if one expands the delta function as in Eq. (51), i.e. calculates the
coefficients u, corresponding to f(x) = §(x), followed by modify-
ing the coefficients u, with Lorentz kernel: yu, — Mngn )(Lorentz)
then the obtained kernel-modified Chebyshev approximation vi-
sually resembles to a Lorentzian X;/ f;z with smearing parameter

(N ) (Lorentz) := , (53)

y = % For example, if one selects A =5, the two functions: the
Lorentzian having width y = % and a Chebyshev expanded delta
function with kernel-modified expansion coefficients, are virtu-
ally identical. In Fig. 2 we fix N = 64, and show Lorentzians of
width ¥ = % together with Lorentz kernel-modified Chebyshev
approximations of delta function of order N, as parameter A is

swept through the values A = 1,2, 3,4,5. We notice that larger
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Fig. 2. (Color online) Lorentzians of width y = 2

n (red circles) together with Lorentz kernel-modified Chebyshev approximations of delta function of order N (blue solid

curves), for a fixed value of N =64 when the parameter A is swept from values A =1 to > =5.

50 {50} 150} 150} 150f °
40} ] 40} 140} 140} {40f -
301 130} 130} 130} 30
= °
20| 120} 120} 120 - 20t
10} 110} 110F = {10} 10
2
0 ‘ 0 ‘ 0 ‘ 0 ‘ 0--JL--
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X X i xr X
N =16 N =32 N =64 N =128 N = 256

Fig. 3. (Color online) Lorentzians of width y = %

(red circles) together with Lorentz kernel-modified Chebyshev approximations of delta function of order N (blue solid

curves), for a fixed value of kernel parameter A = 1.5 when the order N is swept through the values N = 16, 32, 64, 128, 256.

value of A gives better damping of the Gibbs oscillations and gives
better resemblance to an appropriate Lorentzian, however, for a
fixed Chebyshev approximation order N, smaller values of A yield
higher peaks and better resolution in terms of width. Thus, the
value L = 1.5 seems like a good compromise between the two. In
Fig. 3, we fix A = 1.5 parameter, and show Lorentzians of width
y = % together with Lorentz kernel-modified Chebyshev approxi-
mations of delta function of order N, as the order parameter N is
swept through the values N = 16, 32, 64, 128, 256. Thus, for values
of A parameter below A < 4 the resemblance with Lorentzian is
less pronounced, however the relation y = % still approximatelly
holds, but has to be taken only indicatively. Important remark to
notice is that once the Chebyshev expansion coefficients w, are
obtained (as explained in the previous subsection) one can easily
choose and experiment with various kernel coefficients since they
are selected a posteriori.

Notice that trivial transformation: wu, — 1 - u,, can also be
viewed as an action of constant kernel:

gﬁN) (Dirichlet) :=1,

which is usually called the Dirichlet kernel.

In conclusion, the main goal is to damp Gibbs oscillations en-
countered when expanding a delta function in Chebyshev series
(51), by simply multiplying the expansion coefficients w, with the
kernel coefficient g,(,N), where the choice of the coefficients g,(lN)
depends on the particular application. For example, if we want
a rapidly decreasing expansion, a good choice is to use the Jack-
son kernel. On the other hand, if the expanded function displays
the Breit-Wigner shape, such as the response function dB@) e
should use the Lorentz kernel.

(54)

do

3.3. Evaluation of Chebyshev series

Suppose we have calculated the coefficients o, i1, ..., 2N,
in Eq. (41) and multiplied them with an appropriate kernel coeffi-
cients gr(IZN“H). We wish to evaluate the series (41) on a frequency
grid (a)k),':’il C (—Qp, +2p) having N, points for e.g. plotting or
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numerical integration purpose. We can use the well known Clen-
shaw algorithm [25], but if we do not insist on a specific frequency
grid such as uniform grid, it is better to use the Chebyshev nodes:

1
a)k=52bcos(N£<k—§>>, k=1.2,....N. (55)
e

Let us assume that N, > Nj;, which is in practice always true since
we usually evaluate the series on a very dense grid Ne > Nj;. In
that case we can write:

2N,

dB(w) 2 ( © )
= n—1Tn-1|{ =), 56
1o rg — ; Mn—1Tn-1 % (56)

where the higher order coefficients: o, +1, ...
zero. Then there holds:

dB(@y) 2
dw Qp sin (Nle (k- %))

2N,
=D\ o (i=Dk=1)
x Re |:Z (,un_]e TN, )e 2miToR, :| (57)
n=1

Previous summations can be efficiently evaluated using fast Fourier
transform, e.g. freely available FFTW library [26] provides a pro-
cedure which for input sequence xi,xX2,...,xy € C calculates

, M2N,—1, are set to

X

X1, X2, ..., Xy € C defined as:
N (=1)(k=1)
- (—1)k—
X = ane_zr” N (58)
n=1

Therefore, after the coefficients po, (1, ..., uan, are calculated
and kernel-readjusted, one can quickly evaluate the series (41) on
a dense Chebyshev frequency grid for plotting or numerical inte-
gration purpose.

3.4. Bounding frequency

In this subsection we would like to emphasize that the bound-
ing frequency €2, has to fulfill the following condition: £; €
(—Qp, +2p), for all i =1,...,Np. Otherwise, the diagonal ele-

ments T, (3—;) in Eq. (39) are simply not defined. If the se-

quence of functions T, (x) is calculated recursively on R as To(x) =
1,T1(x) = x and Tn(x) = 2xTp_1(X) — Tp—2(x), then the following
equation holds:

To(x) = % ((x 2 1)” 4 (x+ 2 _ 1)"), for [x| > 1.(59)

Therefore, if the bounding frequency €5 does not satisfy +Q; €
(—Qp, +2p) (ie., if Qi/Qp > 1), we expect that the recursive pro-
cedure (45) which generates the sequence of vectors |o;) € C2Np
will quickly diverge. In practice, we can often provide a heuris-
tic physical estimate of the upper bound for max(Qi)f.V:p], and thus
guess the value of €. During the recursive procedure (45), we
can notice immediately if the bounding frequency is underesti-
mated due to the divergent behavior of the w, coefficients. On the
other hand, a more pedantic approach is to calculate the maximum

. N .
eigenfrequency Qmax = max(£2;); :"] as an extremal eigenvalue:

1 0 A B Xmax Xmax
0 —1|[ B A+ || ymax | = @max| ymax |-

Xmax’ ymax o (CNP. (60)
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Previous equation can be solved efficiently by employing one of
the many existing iterative Krylov-space methods or power meth-
ods. The bounding frequency is then defined as Qp = Qmax + €
for some small value of ¢, e.g. € =0.01Qn.x. We recommend a
heuristic approach for estimating €2}, if the solver is supervised
manually, although even then one can easily detect divergent be-
havior automatically and readjust €2, accordingly. For a large-scale
calculations it is better to use the latter pedantic approach.

3.5. Method summary

The steps of the proposed method are summarized in Algo-
rithm 1. We emphasize that the method is not memory intensive,
since we do not need to store vectors (|o) 111\120 in the computer
memory. Keeping track of only three vectors |@new), [0old), |0ttmp) €

CNr will suffice to go through the recursion (45). Also, when we
reach n = Ny, the algorithm stops and yields coefficients (/Ln)ﬁig,
but if the last two vectors |an; —2), |, —1) are stored on drive, we

can later continue calculating higher coefficients w, for n > 2Nj;.

Algorithm 1: QRPA Chebyshev kernel polynomial method.
Input:
. . x A B[X .

e QRPA matrix-vector mapping: [y] e C%r > [B* A*] [y] e C?Np, with
Hermitian positive-definite QRPA matrix.

e Vectors F20 F02 ¢ CN»,

e Bounding frequency € > 0 satisfying (:N:QI-),N_,”1 C(—p, +2).

e Number of iterations Nj, i.e. the number of matrix-vector products and
number of Chebyshev nodes N, > Nj; for evaluation of dg#.

o Kernel coefficients ng“H), n=0,1,...,2Nj.

o Initialize |aglq) < |@o), |onew) < 1) according to Eq. (44):

F20 1 o110 A B F20
otaia) <[ 5, | and fornew) < o [o 5]l 1] 5 - (61)
e Initialize ;1o and w1 according to Eq. (46):

1 rp0qf F207t
po <5 1 | o) and 1 <[5 etnen)- (62)
for n=1,2,...,Nj do
// Now there holds: |otpew) = |otn) and |otglg) = |0tn—1)-
e Calculate pp,—1 and pn according to Eq. (48) and (49):
10
o Uon—1 < 2(cold [0 71] [etnew) — p1,
10
o lon < 2{0newl [0 71] |@new) — 2140-
o If fton—1, (Lo start to diverge, 2, is too small, restart with new !
e If n < Nj, update vectors |tpew), |®¢o1d) according to Eq. (45):
® |Ctmp) < |Onew),
(_i[l 0][A B]‘a ) = |toi)
® [Onew) % lo-1]|p*a* new old)»
o |otog) < |atmp>~

end

e Apply kernel transformation p, < gLZN““)

Mn, forn=0,1,...,2Nj.
e Evaluate d'i;—u")’") on Chebyshev nodes (wk)f:’;] using Eq. (57) via FFT.
Output: Truncated Chebyshev expansion of the response function d%")

in Eq. (41) evaluated on Chebyshev frequency nodes (55).

as

4. Numerical results

To validate our implementation of the KPM for calculating the
QRPA response function, as described in Algorithm 1, we have
performed several test calculations. All tests are available at the
public GitHub repository [27] in a form of MATLAB scripts, tested
on the MATLAB releases R2018a and R2021a. We have also veri-
fied that scripts are running with GNU Octave 5.2.0 as a publicly
available alternative which is mostly compatible with MATLAB. We
notice that for some calculations Octave is considerably slower in
comparison to MATLAB. To reduce the computation time, we have
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included the recommended values of numerical parameters to be
used with Octave in the scripts that would otherwise be time con-
suming.

4.1. Test 1: synthetic model

For our first test case we use synthetically generated QRPA
matrices A, B and vectors F29, F%2 by employing the procedure
described in Appendix B. The matrix dimension and the bound-
ing frequency are set to Np = 1000 and €2, =250 MeV, respec-
tively. 500 random eigenfrequencies 2; are generated uniformly in
range from 0 MeV to 200 MeV and combined with another 500
random eigenfrequencies €2; generated uniformly in range from
0 MeV to 50 MeV. The resulting QRPA spectrum will obviously
be more dense in the low energy region. Next, we generate ran-
dom sequence of values 64, ..., QNP >0 and two unitary matrices
C,D e CNe*Np 35 Q factors in the QR decomposition of two ran-
dom Np x Np complex matrices. The X and Y matrices are con-
structed as:

X = Ddiag[cosh6;],”,C and Y = D*diag[sinh6;]",C, (63)

and used to generate the A and B matrices:

A=+ [xszxu(mﬂ)*] and B=— [XQYT+<XQYT)T] :

(64)
as explained in Remark 1.
Notice that from Eq. (32) the response function ‘ﬂ%") can be
written as:
N N
dB(w) <A, s o
o = 2 NiIFI0)2a(@ — ) = 3 [OIFIDIPs (@ + ), (65)

i=1 i=1

where vectors ((i|I:'|O));\Z’1 e CMv and ((i|I:'|O));V:‘“1 € CNv are de-
fined as:

(i1 F o), x y*'[F2
(0" . le :|:Y X*:| |:F02:|‘ (66)
(O[F|i});
The real and imaginary parts of the matrix elements (i|EF|0) are
generated from the standard normal distribution and since we as-
sume that the operator F is Hermitian. We set: (0|F|i) = (i|F|0)*.
Finally, we construct vectors F20, F02 ¢ CN» so that Eq. (66) is
satisfied:

F20 I o[x vY*][1 o0 ((i|ﬁ|0))’.vj1
[FOZ] B [0 —l} [Y X*} [0 —l] o™ | ©
i=1
In Fig. 4 we display the response function Eq. (65) calculated on
the interval (—p, +£2p) for one such generated example. Next, we
will try to reproduce this response function by employing the KPM.
We select the allowed number of the QRPA matrix-vector multipli-
cations Nj; and perform steps of Algorithm 1, using the Lorentz
kernel with parameter A = 1.5. The results are shown in Fig. 5 on
the low-energy interval from 0 MeV to 50 MeV, where we increase
Nj; from 200 up to 6400 iterations, each time doubling the value
of Nj. Since the Lorentz kernel approximates delta functions in
eq. (65) with Lorentzian distributions of width:

YiPM = p (68)

2N +1°
we expect that doubling the number of iterations Nj in Algo-
rithm 1 will yield the sum of two times narrower Lorentzians.
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For comparison, we also plotted in Fig. 5 a true response function
folded with a Lorentzian of width y =0.05 MeV:

N
dB(®)| a2 y/m
0 V_E'“'F'O” @i y?
Np
. 0 IA: o\ 12 )//7'[ . 69
;u P a2 (69)

In Fig. 6 we show a zoom of the response function for frequency
in range from 0 MeV to 10 MeV and Nj; = 6400. We notice that
some artefacts of the Gibbs oscillations are still present and al-
though they could be further damped by increasing the Lorentz
kernel parameter A, this would require more iterations Nj; in Al-
gorithm 1 according to Eq. (68) in order to obtain the same ykpm.
We have found that A ~ 1.5 provides a good compromise between
speed and accuracy of the KPM calculation. From Eq. (68) it follows
that one should select the smallest possible bounding frequency
Qp (but still larger than the largest eigenfrequency 2max) in order
to minimize the necessary number of iterations Nj; for the targeted
smearing width ykpm, assuming fixed A parameter.

We can conclude that the proposed implementation of the KPM
to calculate the QRPA response function successfully reproduces
the results obtained by direct diagonalization of synthetically gen-
erated QRPA matrix. We have also verified that the same results
are obtained if linear response equations (25) are solved for a
range of frequencies w with fixed y = 0.05 MeV.

4.2. Test 2: matrix RPA solver

In this test, we would like to validate the KPM implementation
for calculating the RPA response function when applied to a real-
istic RPA solver. For this purpose we have selected publicly avail-
able RPA solver skyrme rpa [28]. This solver is implemented for
closed shell spherical nuclei with Skyrme-type interactions. The
Hartree-Fock equations are solved on a radial mesh using the box
boundary condition and the RPA matrix is explicitly constructed
and diagonalized for a given value of total angular momentum
and parity J7. The output of the skyrme rpa solver contains
calculated eigenfrequencies and transition strengths for isoscalar
and isovector multipole operators A}S,/ v, Also, the isoscalar and
isovector response functions (69) folded with Lorentzian functions
of selected width y are provided.

We have modified the skyrme rpa code and extracted the
RPA matrices A and B and vectors F20, FO% for the 129Sn isotope
and J* =5~ isovector operator. Calculation was performed by em-
ploying the SLy5 Skyrme interaction [29] in a 20 fm radius box
with 0.1 fm radial step and 100 MeV cutoff energy.! The resulting
2Np x 2N RPA matrix is of order N, = 1310. Based on the value
of the cutoff energy E., we do not expect that the particle-hole
energies will be larger than ~ 250 MeV, therefore we set the value
of the bounding frequency to €, =250 MeV. Indeed, we have ver-
ified that the largest calculated RPA eigenfrequency is Qmax = 156
MeV. In order to damp Gibbs oscillations, Lorentzian kernel with
parameter A = 1.5 was used. Fig. 7 displays the response func-
tion obtained by the original skyrme rpa code folded with the
Lorentzian function of width y = 0.05 MeV in comparison to the
results obtained using the KPM with Nj; = 6400 iterations. It is
worth noting that the necessary number of iterations Nj; could

1 Cutoff energy E. denotes maximum energy of the unoccupied single-particle
states included in the RPA model space. The maximum particle-hole energy is thus
E. — €, where €, is the deepest hole energy. For the chosen value E. =100 MeV,
rough estimate of the maximum particle-hole energy is ~ 150 MeV.
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w [MeV]

Fig. 4. (Color online) Synthetically generated response function =5 calculated by using Eq. (65). The positions of the vertical lines are given by the eigenfrequencies €;,

dw

while the heights are equal to |(i|F]0)|2.

be reduced by choosing the bounding frequency 2; closer to the
largest RPA eigenfrequency Qmax.

In Fig. 8 we display a zoom of the response functions shown
in Fig. 7 for frequency in range from 20 MeV to 30 MeV. The two
response functions are virtually identical although there are still
some Gibbs oscillation effects visible in the response function cal-
culated by the KPM.

4.3. Test 3: quasiparticle finite amplitude method solver

Next, we would like to validate the KPM implementation for
calculating the QRPA response function when applied in conjunc-
tion with a realistic QFAM solver. Similar to the previous test,
we have selected publicly available finite amplitude method solver
DIRQFAM [30]. The DIRQFAM code calculates the QRPA multipole
response of even-even open-shell nuclei with axially deformed
ground state using the finite amplitude method, based on the rel-
ativistic self-consistent mean-field models. The QFAM amplitudes
are expanded in the basis of the eigenfunctions of the axially sym-
metric harmonic oscillator with simplex-y symmetry imposed. The
DIRQFAM code iteratively solves the QFAM equations for a given
frequency wy :

(Ep + Ey — 0)) Xy (@y) + 8HZ (0,) = —F2, (70)
(Ep + Ev 4+ ©))Y (@) + 8HY, (wy) = —F 1%, (71)

It should be emphasized that the QFAM calculations can be per-
formed very efficiently by using the self-consistent symmetries of
the ground state,? together with the structure of the excitation
operator F. For initial guess of the QFAM amplitudes we usually
choose:

Xuv(wy) =Yu(wy) =0, (72)

2 In the DIRQFAM code one assumes the axial symmetry, parity and time-reversal
invariance in the ground state.

and during the iterations QFAM equations preserve the symmetry
of the excitation operator. For example, if the excitation opera-
tor proportional to the spherical harmonic Yk (0, ¢) is used, all
matrices involved in the calculations turn out to have block struc-
ture and the induced densities and currents have simple cos(K¢)
or sin(K¢) angular dependence. By utilizing these properties, the
computational cost of the QFAM calculations is reduced drastically.

At the core of any QFAM solver is the implementation of the
linear mapping:

X ], SHZ),
Y SHO2
nv 7y

_ |:_(E/L + EU)X//.U + ZW«/ A,U.v.ij’xp_’u’ + B[,LU,/I/U’Y,U,’U/]

—(Ep+Ev)Yuy + ZM’<V’ Bfw,u«’v’xu’w + A*uu,u’u’ Yy
(73)

which together with the QFAM equations (70) and (71) is used
to solve these equations iteratively. However, the DIRQFAM solver
does not implement the full mapping (73) for arbitrary ampli-
tudes Xy, Y0, but rather only for those belonging to the linear
subspace defined by the self-consistent symmetries of the ground
state and structure of the excitation operator (see [30] for details
on the DIRQFAM code). Therefore, it seems that we might en-
counter problems implementing the KPM since the DIRQFAM code
actually has no access to the full mapping:

X 2N A B X 2N
lecrn g &[5 ]ecm (74)

required by the Algorithm 1. However, the algorithm initializes
vectors |eold), |®new) as in Eq. (61) which are consistent with the
selection rules of the excitation operator and all selection rules
are preserved throughout the recursion in Algorithm 1. This means
that the KPM for calculating the QRPA response function does not
require the full mapping (74), but only restricted mapping on vec-
tors consistent with the selection rules of the particular excitation
operator. This point is very important in practical calculations be-
cause virtually every QFAM solver assumes some form of symme-
try in order to reduce the computational complexity.
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Fig. 5. (Color online) True response function (solid red curve) folded with Lorentzian of width y = 0.05 MeV in comparison to the response function calculated by using
Algorithm 1 (dot-dashed blue curve) as the number of QRPA matrix-vector multiplications Nj; increases from 200 to 6400. We plot only the low-energy region from 0 MeV

to 50 MeV.

For the purpose of this test, we have

with deformed ground state (8 ~ 0.485),

selected the 190Zr nucleus
subjected to the isovector

octupole | =3, K = 3 excitation. In the particle-hole channel we
employ the DD-PC1 [31] effective interaction, while the particle-

particle channel is described by a separable finite-range force [32].
Dirac spinors are expanded in the basis of the eigenfunctions of
the axially symmetric harmonic oscillator with 14 major shells for
large and 15 major shells for small components. First, for compar-
ison purpose, we have performed the QFAM calculation sweeping

10

through frequencies from 0 MeV to 50 MeV and using the smear-
ing ¥ = 0.05 MeV. Then, we employ Algorithm 1 with Lorentz
kernel with parameter A = 1.5. In order to obtain an assessment
of the bounding frequency, we need a rough approximation of the

QRPA eigenfrequencies (Qi),{\fl. As a starting point, we can ignore
the residual interaction H7), = §HY?% = 0 in QFAM equations (70)
and (71) (often refereed to as the free response) which yields the
lowest order approximation value of the largest QRPA eigenfre-
quency:
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Fig. 6. (Color online) Zoom of the response function displayed in Fig.
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5 for frequency in range from 0 MeV to 10 MeV. The number of iterations used is Nj; = 6400.
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Fig. 7. (Color online) Comparison of the response functions obtained by using the original skyrme rpa code (red curve) and the KPM (blue curve) for the '2°Sn isotope and

isovector J™ =57 excitation.

Qmax ~ max,y |Ey + Ev| <2maxy, |Eyl. (75)

Since DIRQFAM solver relies on the relativistic EDFs, configura-
tion space includes, not only the Fermi sea, but also the Dirac
sea of negative energy states. In addition to the configurations
built from two-quasiparticle states of positive energy, the configu-
ration space must also contain pair-configurations formed from the
fully or partially occupied states of positive energy and the empty
negative-energy states from the Dirac sea. The inclusion of con-
figurations built from occupied positive-energy states and empty
negative-energy states is essential for current conservation and the
decoupling of spurious states [33]. Since the energies of the states
in Dirac sea reach typical values of E, ~ —2000 MeV, the value
of the maximal QRPA eigenfrequency is very large and thus we
have to use a comparable value of the bounding frequency €2;. In
this particular test we use the value 2, =4500 MeV. Indeed, the
Algorithm 1 diverges quickly if one tries to reduce the bounding

11

frequency below 4000 MeV. This behavior suggests that the KPM is
not well suited for calculations based on the relativistic EDFs, be-
cause according to the Eq. (68) we would have to perform a large
number of iterations Nj; in order to obtain a reasonably sharp res-
olution yxpm of the KPM approximation of the response function.
Nevertheless, since DIRQFAM code is the only publicly available
QFAM solver at this time, for demonstration purpose we have im-
plemented the KPM in conjunction with this solver. In Fig. 9 we
show the response function for the J =3, K = 3 excitation built
on top of the deformed ground state in the '%0Zr. Results obtained
with the DIRQFAM code (solid red line) are compared with those
obtained by the KPM implementation (dotted blue line). A large
number of iterations Nj; = 100000 was used in the KPM calcula-
tion due to the effects of the Dirac sea. In Fig. 10 we show a zoom
of the response function displayed in Fig. 9 for frequencies in range
from 20 MeV to 40 MeV. If we estimate that one typically requires
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Fig. 8. (Color online) Zoom of the response function displayed in Fig. 7 for energy in range from 20 MeV to 30 MeV.
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Fig. 9. (Color online) Comparison of the response functions obtained using the original DIRQFAM code and the proposed method for deformed (B ~ 0.485) isotope 90Zr

subjected to isovector | =3, K =3 excitation.

50 QFAM iterations to find the QFAM response at any given fre-
quency wy, in 100000 QFAM iterations we would have obtained

2000 points (a)y, d%—g")‘ ) which is more than enough to display
14

a good approximation of the response function on energy interval
0-50 MeV even for a small smearing y.

In the QRPA calculations, sometimes one encounters zero-
energy modes known as the Nambu-Goldstone (NG) modes. The
NG modes originate from the broken symmetries on the mean-
field level of the calculation: translational symmetry, rotational
symmetry and particle-number (gauge) symmetry. Since the NG
modes do not represent physical excitations, they are also referred
to as spurious modes. So far, we have used the XY representation
of the QRPA and assumed that the QRPA matrix is positive def-
inite, yielding @; > 0. The XY representation is not adequate to
treat the zero-energy NG modes because they are not normaliz-

12

able in this representation and, in principle, one should switch to
the Q P representation (for extensive discussion see Ref. [34] and
references cited therein). However, due to the various numerical
inaccuracies in practical calculations (e.g. single-particle states are
expanded in the finite harmonic oscillator basis or in the coordi-
nate lattice of a finite box), the frequency of the NG modes is small
but still finite. Hence, such states can still be safely treated in the
XY representation. To illustrate this, we analyze the K* =17 spu-
rious mode originating from broken rotational symmetry. In Fig. 11
we display the response functions for the | =2, K =1 excitation
operator built on top of the deformed ground state of the 190zr
isotope. A zoom of Fig. 11 is shown in Fig. 12 with smaller span
on the vertical axis. Indeed we observe one dominant spurious
mode originating from the broken rotational symmetry and again
we find an excellent agreement between the DIRQFAM and KPM
response. We have also verified that the KPM method successfully
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Fig. 10. (Color online) Zoom of the response function displayed in Fig. 9 for frequencies in range from 20 MeV to 40 MeV.
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Fig. 11. (Color online) Comparison of the response functions obtained using the original DIRQFAM code and the KPM for deformed '%0Zr isotope subjected to the isoscalar

J =2, K=1 excitation.

reproduces the DIRQFAM K” = 0% response to the particle num-
ber operator. In this case, only the NG mode is present and the
KPM is still applicable. We notice that the DIRQFAM solver sep-
arates the spurious center of mass K™ = 1~ mode from physical
modes by using a method described in Ref. [9].

Finally, we would like to emphasize that in the presence of
imaginary QRPA eigenfrequency® the KPM calculation diverges. Es-
sentially, the KPM deals with the Chebyshev polynomials evaluated

at the eigenfrequencies: T, <g—l’7)

Since T,(ix) diverges as n increases for x > 0, one can easily see

, as can be seen from Eq. (39).

3 E.g. if one tries to perform the spherical J* = 2% QRPA calculation on a nucleus
with deformed ground state. In this case the constrained spherical configuration on
top of which the QRPA calculation is performed does not correspond to the HFB
minimum and therefore the HFB stability matrix, i.e., the QRPA matrix, is not posi-
tive definite.
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that the existence of eigenfrequency with significant imaginary
part yields a fast divergence of the KPM method. On the other
hand, such a fast divergence can be used as a clear indicator that
one is performing calculation based on the stability matrix which
is not positive definite.

In conclusion, we have demonstrated as a proof-of-concept that
Algorithm 1 can be rapidly integrated into an existing QFAM solver
(e.g. additional ~ 300 lines of code in the DIRQFAM solver). How-
ever, the method is not well suited for models based on the rel-
ativistic energy density functionals because of the contributions
from the states in the Dirac sea, and it diverges if the calculated
ground state does not correspond to the HFB minimum.

4.4. Test 4: moments of the response function

It is well known that the sum rules represent a very important
tool in studies of collective excitation, especially giant resonances
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Fig. 12. (Color online) Zoom of the response function displayed in Fig. 11 with smaller span on the vertical axis.

[7]. Although sum rules provide less detailed description of the re-
sponse function in comparison to the full QRPA calculation, they
are still very useful for calculating the global properties of the
response function. In this section we show how the Chebyshev ex-
pansion of the response function Eq. (41) can be used to calculate
the moments defined as:

Np
m = QF[(i|F|0)|?, for ke Z. (76)
i=1
From Eq. (65) one easily sees:
T dB
my = f oK B@ 4, (77)
dw
0

We assume that the excitation operator F is Hermitian giving
(O[F|i) = (i|F|0)* and consequently (F®?)" = F?0. First we focus
on the odd moments k € Z since they can be efficiently calculated
directly [35]. Recall the Lemma 1 and equation:

1 o][A B] _[x v][+@ o [x vy
0 —1|[B* A ||y x*|| 0o -y x| -
(78)

Notice that for any k € Z (even for negative) the following equa-
tion holds:

(5 &)

CIx v [EF o [x v
—[Y x*][ 0 (—Q)k]_y x*] (79)
By using Egs. (29) and (67), one can easily show:
F207" 1 o[ A BT\[1 07[F2]_
F02 0 —1||B* A*|) [0 —I|[F®2 |~
Np Np
=Y Q) |(IFI0)1> = Y (=) |(0IF i) (80)
i=1 i=1
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Using the fact that k € Z is odd integer and (0|E|i) = (i|F|0)* we
finally obtain:

Np
me = Qf|(i|F|0)?
i=1

SIS S A e

Notice that my is indeed a real number. If k > 0, Eq. (81) can be
used to evaluate my by applying the mapping Eq. (74) k times. On
the other hand, if k < 0, one has to solve the linear system k times
with invertible matrix:

o o)l 2]

This is exactly what the QFAM solver does when finding the QFAM
amplitudes X,,,(wy), Y, v(wy) for fixed frequency wy, i.e. when
solving the linear equation (25) having only access to the mapping
(74). In conclusion, if k € Z is odd, QFAM solver can use equa-
tion (81) to efficiently calculate the odd moments m; directly. We
have validated Eq. (81) on synthetically generated examples used
in Sec. 4.1 and on realistic example used in Sec. 4.2.

Now we turn to a more difficult case, where k € Z is an even
integer. Also, we assume that k > 0. Since all the eigenfrequencies
are located in an interval (—Qp, +€2p), when inserting the expan-
sion (41) into Eq. (77), we obtain:

(82)

& 2Njt
my = / a)kdlz%dw A ml({ChebyShev) =k Z punl® (83)
0 n=0
with integrals I,<,k) defined as:
1
o _ 2 x"%dx. (84)

0
For x € [—1,+1] and even k € Ny, the following expression holds:
k/2

1 1 k

k

X =—_— E S )T i(x%). 85
2k=1 j01+51,0<’§—]> i (8
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Combined with the identity:

2T () Ta(X) = Tmgn (X) + Tim—n| (%), (86)
one can easily calculate:
k/2
®) 1 1 k
I
! Zl+8 02k<——1)+
. . . v .
+ (smc (E(n+]))+smc(§|n—]|)), (87)

where sinc(x) = sinx/x. If we precalculate and store the inte-
grals I, the moment m,iChEbyShe") for even k > 0 is, according to
Eq. (83), given by a simple scalar product of the (Mn)ﬁzié coeffi-

2N;
cients with the integrals <I,§,k) ) “In the case of even but negative

n=!
values of k, we cannot follow the same procedure of integrating

term-by-term in Eq. (83) because for negative k, the integrals I,ﬂk)

diverge in general. Therefore, because we have the response func-
tion evaluated on Chebyshev frequency nodes:

dB(wi) \ "™ . (1 AN
( dw )izl’ (wl_ beos Ne (l 2)))1‘:1’

we can try using the Gauss-Chebyshev integration formula:

(3 (-2)

(88)

/f(x)dva— Z fxp) l—x Xj = COS
i |'n+1"

(89)
and obtain an approximate value of the moment my,:
T dB(w;)
~ k i 2 2
me~ - > o o V% o (90)

e

However, it turns out that this approximation is poor and the
method is not suited for calculating the moments with k < 0 due
to the w* factor that appears in the integrand of Eq. (77).

In order to test the method for even k > 0, we have again gen-
erated synthetic QRPA matrices A and B and vectors F2° and F%2,
as in Sec. 4.1. After experimenting with various kernels, we have
found that for the k = 0 moment, the best results (in a sense of
convergence speed with increasing Nj;) are obtained with Jackson
kernel, while for other even k > 0 moments, Dirichlet kernel yields
fastest convergence. In Fig. 13 we display the difference between
the true value of the moment my, for even k > 0, and the value cal-
culated by using the KPM as a function of the number of iterations
Njt. We notice that convergence rate increases with k and for the
k =0 moment mg the convergence rate is very slow. This behavior
can easily be explained by the structure of the response function
Eq. (65). The delta functions §(w + ;) are smeared when approx-
imated by the Chebyshev series and by increasing the number of
iterations Nj; they become more narrow. For instance, if Lorentz
kernel is used, the smearing is given by yxpm in Eq. (68). For small
QRPA eigenfrequencies and insufficient number of iterations (i.e.
too large smearing), approximations of delta functions are smeared
outside the integration interval Eq. (77). This problem is less pro-
nounced for k > 0 because the w* factor reduces the value of the
integrand for small values of w. Hence, the convergence will be
faster for larger k values and very slow for k = 0, in accordance
with results shown in Fig. 13.

We have also verified that moments are calculated correctly if
realistic RPA matrices A and B and vectors F29, F92, generated by
the skyrme rpa code, are used.
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In this section we have shown how to efficiently calculate the
moments of the response function my for k > —1. We notice that
we could generalize our approach, e.g. to calculate the integrals
that include product of the Fermi integral function fr;(E) and the
response function, appearing in the beta-decay rates formulas:

12 dB 12
. /fm) @) jp = 2

an(szn i|F10)%. (91)

The only difference is that instead of the integrals I,(,‘k) in Eq. (84),
we would calculate:

Tr(%)

92
x_x (92)

= / fr1(2pX)

Because the Fermi integral function fr;(E) in the low-energy re-
gion is relatively small, we expect fast convergence in the same
way we obtained fast convergence for even k > 0 moments. Ap-
proach using the contour integration of the QFAM strength func-
tion has already been applied on beta-decay rates calculations [36]
and it would be interesting to compare the efficiency of the two
approaches on realistic examples.

5. Summary and outlook

In this paper we have proposed an implementation of the ker-
nel polynomial method, already successfully employed in the solid
state physics [21,20], adapted for efficient calculation of the QRPA
response function. The method is based on the expansion of the
QRPA response function in an orthonormal basis of Chebyshev
polynomials thus reducing the problem to the evaluation of the ex-
pansion coefficients. In practical calculations the expansion has to
be truncated and because the QRPA response function is essentially
a sum of weighted delta functions one encounters the problem of
Gibbs oscillations. Standard procedure to damp the Gibbs oscilla-
tions and improve the precision of the Chebyshev series expansion
is to convolute the response function with various damping ker-
nels, e.g. Jackson or Lorentz kernel.

The proposed implementation of the KPM has been bench-
marked and tested by comparing the QRPA response function with
the one calculated by direct diagonalization of the QRPA matrices
or by solving the QFAM equations. Our results demonstrate that
the KPM can reproduce the QRPA and QFAM results to a high nu-
merical accuracy. However, the efficiency of implementing the KPM
depends significantly on the range of the eigenvalues of the QRPA
matrix, i.e., broad range of eigenvalues requires a large number of
iterations within the KPM implementation. In the following, we list
the main advantages and drawbacks of implementing the KPM in
calculating the QRPA response function.

Advantages of the KPM include:

e The KPM provides the response function on the entire frequency
interval (—jp, +$25)* compared to QFAM which calculates the
response for a discrete set of frequencies.

e If one performs QFAM calculation with very small value of
smearing width y and frequency w close to the pole, the lin-
ear system (10) is ill-conditioned requiring a large number of
iterations to be solved, e.g. by the Broyden method which is
often used for that purpose in QFAM solvers. The proposed im-
plementation of the KPM circumvents this problem.

4 Once we calculate the coefficients in the Chebyshev expansion, we can easily
evaluate the approximation of the response function for any given frequency.
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Fig. 13. (Color online) Convergence of even k > 0 moments as number of iterations Nj is increased. For k = 0 moment, Jackson kernel is used, while for k > 0 moments,

Dirichlet kernel is used. Notice the logarithmic scales.

e The KPM can be implemented into any available QFAM solver
with minimum programming effort.

o If the bounding frequency 2, is small, i.e. if the eigenfrequen-
cies ©; are bounded in a relatively small interval, the method
can locate the QRPA poles with large transition strength much
quicker in comparison to the QFAM approach which can be cru-
cial for many applications.

e The resolution of the standard QFAM calculation is determined
by the smearing y, i.e., in order to increase the resolution of the
response one has to repeat the entire calculation with smaller
value of y. On the contrary, the Chebyshev KPM approach re-
quires only larger number of iterations Nj; to obtain a response
function with better resolution in terms of smearing yxpm and
there is no need to repeat the entire calculation.

Drawbacks of the KPM include:

e Appearance of the Gibbs oscillations. This problem can be ad-
dressed by introducing damping kernel, e.g. Lorentz kernel. The
damping is controlled by the A parameter in Eq. (53) with large
values (e.g. A & 5) leading to negligible effects of the Gibbs os-
cillations. However, according to Eq. (68), increasing the value of
the A parameter requires larger number of iterations Nj; in or-
der to obtain targeted resolution ykpm. Hence, one has to choose
a value of the A parameter that presents a satisfactory com-
promise between sufficient damping of Gibbs oscillations and
convergence speed in terms of resolution ykpm-.

e If the poles of the response function 2; are distributed across
large energy region, i.e. if the bounding frequency €2}, has to be
relatively large in order to include all the poles in the interval
(—Qp, +2p), the KPM requires a large number of iterations Nj
in order to produce a satisfactory resolution ykpm.

e The KPM cannot be used to calculate the response function in a
localized energy region of interest (e.g. low-energy region up to
20 MeV), but rather globally on the entire (—2p, +£2p) interval.

e The KPM can not be parallelized since recursion (45) operates
sequentially. On the contrary, QFAM calculation can be easily
parallelized because the response for each frequency is calcu-
lated independently.
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e The KPM calculation diverges in the presence of the imagi-
nary QRPA eigenfrequency, thus it should be applied only if the
ground state corresponds to the HFB minimum.

Overall, the KPM is better suited for models based on the non-
relativistic EDFs [37,17,38,39] because in models based on rela-
tivistic EDFs the appearance of the Dirac sea necessitates large
values of the bounding frequency. When applied to the models
based on the nonrelativistic EDFs, we believe that the method can
significantly speed up the process of finding the response function
with high resolution in terms of smearing.
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Appendix A. Existence of the QRPA eigenvalue problem solution

In this Appendix, we rigorously prove that in the case of
positive-definite QRPA matrix, there exist positive eigenfrequen-
cies Q; > 0 and QRPA amplitudes X', Y', which are the generalized
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eigenpair of the QRPA matrix (16) satisfying the generalized nor-
malization and closure relations (17). We start with two lemmas
which describe the structure of eigenvectors of the QRPA and HFB
matrices followed by a proposition covering the result. Much more
detailed treatment of general QRPA eigenproblem can be found in
Refs. [7,8,40,41], however for convenience we provide here an easy
to follow proof.

Lemma 4.Let A, B € C™" such that AT = A and BT = B. Then
there exist Q € C™2" and diagonal diag[D;1*", € R?>*2" such that

[QQ*] € C221 js ynitary and:

T
A B . .
|:B* A*]:[g*]dlag[Dl]$=1[§*] .

Proof. Let us denote a Hermitian matrix S := [

(A1)

A B 2nx2n
B A*] eC .

Notice that for an eigenvalue D € R, if [;] € Ker (S — Dlapx2n),

then also [i:] € Ker (S — DIypx2n). Let us fix an eigenvalue D €

o (S) ¢ R with eigenspace Vp := Ker (S — DIynx2n), and suppose
dim Vp = p € N. We will show that there exist orthonormal set of

X X
vectors: [i%] e [xg] e C?", such that: span{[i%] ey [Xf]} =

p
Vp. Suppose we have 0 <! < p orthonormal vectors: [2]

M
X

€ Vp. We will show how to construct a normalized vec-

X] X]
tor [XE € Vp, which is orthogonal to previous vectors: [X:{j] L
X1 X . . X X
[XT] s [X?]. Since | < p, there exists [y] € Vp such that [y] ¢
span{[zﬂ,..., [;}i]} We can easily orthogonalize [;] against
other vectors {[2} s [f’i]} i.e. there exists a normalized vec-
X X X1 Xl . .
tor [y] € Vp, such that [y} 1 [X1] [xf]- This gives a nor-

malized vector [i’:] € Vp, such that:

<[ﬁ][f]> ([;][f]>*=0 Vi=1,...L

Thus, there exist two normalized vectors

(A2)

X *
M i’* € Vp, orthog-

] [;‘I’] We differen-

X1

. S y*
onal to previous vectors: [y] , [X ] 1 [XT

5

tiate two cases:

1. Assume that y = —x*. Define z:=ix € C". Then [ZZ*] =i[f,].

and thus we constructed a normalized vector Zi € Vp, or-

thogonal to previous vectors: [ZZ*} 1 [Xl ] s [;H

X
ks * . 1
2. Assume that y £ —x*, i.e. X+ y* # 0y. Define z := N x+
n z | _ 1 X y* ; 5
y*) € C". Then [Z*] = iyl ([y] + [X*]) € Vp is a nor

X1

malized vector orthogonal to previous vectors: [ZZ*} 1 [ N R

X
[ ]
. X1
Thus, we constructed a normalized vector [ "1;1] € Vp orthogonal
+

] 1 [i»}] ey [:ﬂ Repeating this pro-

cedure p = dimVp times, we obtain an orthonormal basis for
X

" ] s [xg ] } Therefore, there exists

X
XD B
XE:I c (C2n><d1mVD has or-

. Xl+1
to previous vectors *
X1

the eigenspace Vp = span {[

xp € CrxdimVp guch that the matrix [
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XD XD . .
thonormal column vectors and S ["E] =D [ X ] Repeating this ar-

gument for each eigenvalue D € 0 (S) having degeneracy dim Vp,
and using the fact that two eigenvectors of Hermitian matrix that
correspond to two different eigenvalues are orthogonal, we ob-

tain a matrix Q € C"™*2" such that [ Q

Q*] € C?nx21 js ynitary and
s[e]=] 4 ]diagidloess) ©

Lemma 5. Let h, A € C™" such that ht = h and AT = —A with
_hA* _i* e CZ2n jnyertible. Then there exist U,V e C™ "

and diagonal E € R™" with positive diagonal elements such that
r *
uv ] € C2mx21 js ynitary and:

v U
" h A u v¥I[+E o J[u v*]'
N v ut|| o —E||lv ur|-

Proof. The proof can be found in Ref. [8]. O

Proposition 1.Let A,B € C"™" such that At = A, BT =B and
A B
B* A*
and diagonal © € R™" with positive diagonal elements such that there
holds:

[A B[Xx Y* I o[x Y*|[+2 o
| B A*][Y x*}:[o —I][Y x][ (] —sz] (A4)

and:
X v*I[1 o[x v*7' 1 o
vy x[lo —1]|y x| T|o -1

Proof. Due to the Lemma 4 and positive-definiteness of [ ];q*

€ CZx2n s positive-definite. Then there exist X, Y € C™ "

(A5)

']

A* |

there exist unitary [33‘ Zi] e C2 for g1, qy € C™M and diag-
1 @

onal dy,d; € R™" with positive diagonal elements such that:

A B|_|q¢1 q2||d1i O ||q 0 (A6)
B* A*| |q7 @3 ||l 0 d2f|q] 45| '
1/2
Then, a square root matrix [B* A*:| is well defined as:
1/2

A B Tar @][vd@ o [a ] (A7)
B* A*] T lay ¢|l 0 Vdo||lqi a5]° '
Trivial calculation shows that the invertible matrix:

A B17%T1 o][a B2

B* A* 0 -I||B* A* ’ (A8)

has the same structure as the HFB matrix in Lemma 5. Therefore,

*
according to Lemma 5, there exist unitary i’ . | € €22 and

diagonal € € R™" with positive diagonal elements, such that:
A B1Y2T1 ol[a BV
oa Lo Sl A
x y|[+2 o0 x y* T
1y x* 0 —-Qf|ly x*|~

Let us define matrices X,Y € C™" as:

(A.9)



A. Bjelci¢, T. Niksi¢ and Z. Drmac

X vyl _ft o][a B
y x| |o —1||B* ar
x y[+e7 12 0
“ly x 0 -Q712 |

Notice that the matrix on the right-hand side in Eq. (A.10) indeed
has the structure as the one on the left-hand side, i.e. matrices X
and Y are well defined. Straightforward calculation then gives:

Rl ]l Al ]l )

(A10)

(A11)
and:
r all
X Y* I 0 X Y* I 0
Y X" [0 —l] [Y x*}:[o —1}‘ (A12)
Previous equation shows that:
_ -1 "
X v* I 0 X Y* I 0
Y X" :[0 —1][1/ x*] [o —1]’ (A13)
which finally gives:
r . T
X Y*||T O X Y* I 0
Y x*_[o —1][1/ x*] 2[0 —1] = (A14)

Appendix B. Synthetic generation of the QRPA matrices

In this Appendix we present some mathematical results that
can be useful for synthetic generation of matrices involved in the
QRPA equation. Such synthetic matrices can be used for numerical
experiments and various tests. First, we prove the Bloch-Messiah
theorem for bosons stated in Appendix E of Ref. [7], and then give
a Remark explaining a procedure for generating QRPA matrix. In
the literature, we could not find a detailed and easy to follow proof
of the Bloch-Messiah theorem for bosons, and for completeness we
provide a detailed proof here.

Theorem 1. Let X, Y € C™ " such that they satisfy:

[l A0 RT -l o)

Then there exist unitary C, D € C™ ™ and 61,6,, ...,

(B1)

6n > 0 such that:

X = Ddiag[cosh6;]}_, C and Y = D*diag[sinh¢;]!_;C. (B.2)

Proof. The proof is similar to the proof of the Bloch-Messiah de-
composition where in this case the role of the Youla decomposition
of skew-symmetric matrix plays the Autonne-Takagi factorization
of symmetric complex matrix. From equation:

7]l A0 TG )

CIx v oo ][x vy*7'[1 o .
one obtains: [Y X*] =[0 —l][Y X*] [0 —l]‘ which

gives:
0 X Y| |1 0
-1y X*|" |0 —-I|°

(B.3)

x v<1'T1
[Y X*] [0 (B4)

Thus, the assumption of the Theorem gives X, Y € C™*" which ac-
cording to (B.3) and (B.4) satisfy:
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xxT—y*yT =1, (B.5)
Yyx' = x*yT, (B.6)
XTx —vly =1, (B.7)
Yix=x"y. (B.8)

Let X = UTZXVX be singular value decomposition of X, where
Uy, Vx € C™" are unitary and Xy = diag[x;]?_; is diagonal matrix
containing singular values: (x;)7_; C [0, +o00). We will first show

that all (Xz)?:1 are positive. From (B.7) there holds: Yiy = V}:(Ef< —
1)V, which gives o (YTY) = {xi2 —1:i=1,...,n}. Since Y'Y is Her-
mitian and positive-semidefinite, there holds o (YY) c [0, +00),
which yields xi2 —1>0,and thus x; >1>0, foralli=1,...,n
Define X := UXXVi =% and Y := U;jYVI. One can easily show
that X,Y € C™" also satisfy relations (B.5)-(B.8). Let us assume
that the Theorem is true in the case if X € C™" is Hermitian
and positive- deﬁnite In that case, applying the Theorem on X, Y €
(C"X" there exist D, C € C"™x" umtary and 6y, ...,6, >0, such that

Ddlag[cosh 617 C and Y = D* d1ag[smh6‘, C yielding fi-
nally X=D dlag[cosh 6;]}_,C and Y = D* dlag[smh 9,] 1C, where

D= UID and C=C Vy are umtary matrices. Therefore, lf we prove
the Theorem with additional assumption that X € C™" is Hermi-
tian and positive definite, the proof will be completed and thus
assume that X,Y € C™ " satisfy (B.5)-(B.8), where X € C™" is
Hermitian and positive-definite matrix. Since X is Hermitian and
positive-definite, its spectral decomposition is:

p

X=2Z [EB x,-lnixni:| z', (B.9)
i=1

where Z € C™" is unitary and xg”'], . xg,n"] > 0, are its eigenval-

ues having degeneracies: ni,...,n, € N with ny4---4n, =n. De-
fine p := XX" € C™M and k := YXT € C™™", According to Eq. (B.6),
Kk € C™M satisfies: k = YXT = X*YT, thus giving: kT = k. Mul-
tiplying Eq. (B.8) by X' from the right and by X* from the left
yields:

Kkp = p*k. (B.10)
We have p = XX' = Z[D}_; ¥In,xn, ] Z', which combined with
(B.10) gives:

(B.11)

(Z2TkZ) [@xﬁlnixni} = [@xf[nixni} (ZTkZ).

i=1 i=1

Previous equation gives the equality for blocks in matrix ZT«x Z:

&7 = X)(Z"K Z)ji jy = Onnj» 1, =1,....D, (B.12)
which because xq,...,x, > 0 are positive gives:
(Z'k D) j) =Onixnj. i#£j=1,....p, (B13)
i.e. ZTk Z is block diagonal matrix:
p
2'kz =Pk, (B.14)
i=1

having diagonal blocks K; € C">™, which are symmetric: K] =&,
because ZT« Z is symmetric. Every complex symmetric matrix ; €
CnixMi has Autonne-Takagi factorization:

i =u dlag[or(’)]] ali=1,...p, (B.15)
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where u; € C">" are unitary and a](i),...,o,g) > 0. Using these
decompositions, from Eq. (B.14) we obtain:

p
T _ ; (i)n;
(ZU)"k(zU) = P diaglo 11, (B.16)
i=1
where U := @lp:l u; € C™M is unitary block diagonal matrix. On
the other hand, from (B.9), writing Iy, xn; = u,-uj, there holds:

p p
X=2Z @x,-u,uj 7'=(zv) | Pdiagix}, | ZU). (B17)
i=1 i=1

writing « = Y X', Eq. (B.16) gives:

p .
P diagio ]f’>]']?f=] =zu)Tyx'(zu)
i=1

— )Ty (zU)- ((ZU)TX(ZU)>T, (B.18)

which after using Eq. (B.17) and positivity of xq,...,x, > 0 yields:

p .
zu'yzu) = diag[oj(') /xiliy. (B.19)

i=1
Let us define a unitary matrix Q := ZU € C™", and real non-

negative numbers: (y}i))?":] = (crj(i)/x,-)'}‘=l C [0, +00), for i =

1,...,p. Then (B.17) and (B.19) finally give:
p
X=0Q EBdiag[x,-]'}":1 o and
i=1
p .
Y =Q" | Pdiagly|"1, | Q. (B.20)
i=1
Inserting (B.20) into (B.7) we obtain:
SN2
x?—(yj.')) =1, j=1,....n;,i=1,....p, (B.21)

which shows that there exist 61, ..
such that:

.,0, >0, and Q € C™ " unitary
X = Q diag[cosh;]7_; Q" and Y = Q*diag[sinh6;]"_,Q",
(B.22)

which completes the proof in a special case where X € C™" is
Hermitian and positive-definite. O

Remark 1. Suppose we want to generate a positive-definite QRPA

matrix e €221 having preselected positive eigenfre-

A
B* A*
quencies ($2;)}_,. First, guided by the Theorem 1, we generate

unitary matrices C, D € C™ " together with 61,65, ...,6, >0, and
define:
X = Ddiag[cosh6;]}_, C, Y =D*diag[sinh6;]\_,C. (B.23)

Second, we define matrices:

A=+ [XQXT + (YQYT)*] . B=— [XQYT n (XQYT)T] ,
(B.24)
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which satisfy AT = A and BT = B, where Q = diag[Q;]}_, € R™".
Then, one can easily see that (A.4) and (A.5) are satisfied. Also,
(A.4) and (A.5) imply:

e w]=lo Al ][ )
[ %] 4

which evidently shows that the generated QRPA matrix [ ;*

(B.25)

‘]
A*

is positive-definite.
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