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Introduction

The basic assumption of the nuclear mean field is, to first order, the independent 
motion of each nucleon (proton or neutron) in an average nuclear potential. 

-how to describe the average field 
starting from the NN force between

free nucleons?

-the many-body A-nucleon problem?



Evidence for nuclear shell-structure:

Enhanced abundances of elements for 
which Z or N is a magic number.

The neutron-absorption cross-sections 
for isotopes for which N is a magic 
number are much lower than for the 
neighboring isotopes.



The binding energy of the last neutron 
relative to the Weizsäcker formula.

Electric quadrupole moments are 
≈ zero for magic number nuclei.

Excitation energies of first excited states.



One-Particle Excitations

… one-body equation:

average potential

-orthogonality:



… model Hamiltonian for A independent nucleons:

eigenfunctions:

eigenvalues:

… antisymmetrization:

The average potential U(r) is not given explicitly. If one starts from a one- plus two-body 
Hamiltonian:



The smaller the effect of HRES, the better the assumption of an average, independent field 
for each nucleon. 

The radial equation and the single-particle spectrum

… start from a central, one-body potential => the total wave function:

… radial equation:

Boundary conditions for bound states (E<0):

… normalization:



… solutions for the HO potential:

Laguerre polynomials

N = 0,1,2 … major oscillator quantum number
l = N,N-2, … ,1 or 0  orbital quantum number
k = (N-l) /2  radial quantum number

n = k+1 = (N-l+2)/2 number of nodes of the radial wave function in the interval [0,∞).

Degeneracy: -for a state with orbital angular mometum l: (2l+1)

… degeneracy of the oscillator shell N:

spin projections



The total number of states in Nmax oscillator shells: 

For a given nucleus the HO frequency can be related to the nucleon number A. From the 
virial theorem => expectation value of the HO potential energy in the oscillator state ħωN:

For a nucleus with N = Z = A/2:

… average over all occupied proton and neutron HO states. 



In the limit of large Nmax:

Nmax is determined by the nucleon number:

protons and 
neutrons

From:

For A = 100:   ħω = 8.8 MeV.

realistic nuclear single-particle potential



The spin-orbit coupling

Mayer (1949,1950) and Haxel, Jensen, Suess (1949, 
1950) – the average single-nucleon potential should 
contain a spin-orbit term: 

… an intrinsically relativistic effect. It is automatically 
included in the effective potential when the single –
nucleon dynamics is described by the Dirac equation. 
When the nucleons are described as non-relativistic 
particles, the spin-orbit term must be added to the 
Schrödinger equation. 

… the single-nucleon wave function:

- the spin-orbit term is diagonal in this basis. 



does not depend on the spin quantum number. 

From 

depends on the radial form of the potential.

Spin-orbit splitting:

A much used form for ζ(r) is the derivative of the average potential:







Pairing Correlations



Empirical evidence for pairing correlations

For even-even nuclei the ground-state has always zero angular momentum, i.e. the residual 
interaction lowers this particular state with respect to other ang. momentum 
combinations.
Odd-even effect: even-even nuclei are 
bound more tightly than neighboring 
odd-A nuclei.

One-neutron separation energies in Ce. 

In even-even nuclei there is an energy gap
of 1-2 MeV between the ground state and 
the lowest singe-particle excitations.  



Energies of first excited intrinsic states 
in deformed nuclei as a function of the 
mass number.  

Pairing force between nucleons – in addition to the average shell-model 
potential there also acts a relatively short-range residual NN force.



Two nucleons in the same shell:

This state will have the lowest energy for a short-range interaction. In the state J=0 the 
nucleons are relatively close (the spatial overlap of the two nucleon densities is maximal), 
whereas they are not in higher angular momentum states.

For nuclei between closed shells, the nucleons (except the last one) will be paired off . This 
configuration will be most favorable energetically. To excite even-even nuclei, either a pair 
has to be lifted  to a higher shell or it has to be broken. For odd nuclei, the odd unpaired 
nucleon can simply be lifted to higher orbits. 



Pairing in a degenerate single-j shell

… general two-body interaction:

PAIRING HAMILTONIAN:

a) Two particles in a single-j shell

The number of states occupied by 2 nucleons:

Number of states of the form |m –m>:

degenerate states.

Example:



In matrix representation the pairing Hamiltonian reads:
Ω

with the two-nucleon basis arranged so that the first Ω states are those of the form |m –m >. 

is the lowest energy 
eigenstate of HP with
E0 = - GΩ.

closed shell



Since the eigenvalue of this state is equal to the trace of the matrix HP, all other eigenstates
of HP which are orthogonal to |ψ0> must be degenerate with eigenvalue zero. This is because 
the sum of all eigenvalues equals the trace of the Hamiltonian matrix and because this
particular matrix HP is negative definite.  

|ψ0> is shifted downward in energy by –GΩ. 
All other states with J≠0 are not affected.

J=0

J≠0

–GΩ

2 valence neutrons in 2g9/2.



b) n – particles in a single-j shell

Filling the 1g9/2 orbital.



n-particles in non-degenerate shells: BCS

2+
1 excitation energies in Sn isotopes:

… between 2 and 30 nucleons (1 to 15 pairs) are distributed over the available five 
neutron orbitals 2d5/2, 1g7/2, 1h11/2, 3s1/2, 2d3/2.  



… consider a general trial wave function:

closed shellBCS ground state. Not 
an eigenstate of the 
number operator.

… normalization:

… particle number:

… particle number uncertainty:

The uncertainty in the particle number arises from those single-particle states that are 
fractionally occupied, i.e. 



The coefficients uυ and vυ are determined from a constrained variational calculation:

The Lagrange multiplier is chosen such that the average particle number equals the actual 
number of valence particles: 

From:

The BCS transformation from particle creation and annihilation operators to “quasiparticle”
operators: 

inverse transformation



The BCS state is, by construction, the quasiparticle vacuum:

Rewrite the Hamiltonian in terms of quasiparticle operators:

Because of the normal order of the operators, the expectation value of the interacting 
terms in the BCS state vanishes, and the ground-state energy:  

The variational problem: 



From:

★

DEF. the pairing gap:

includes the self-energy correction 
for a particle in a given orbital υ
interacting, via the constant pairing 
force, with an extra pair of nucleons.

… solutions:

Two equations are needed to 
determine the chemical potential
λ and the pairing gap Δ.



Insert the solutions for uυ and vυ into: 

… plus the particle number condition:

For a given set of single-particle energies, particle number n, and pairing strength G, these 
two coupled equations have to be solved simultaneously for the unknown quantities λ and Δ
(solution by iteration). 

Gap equation



E

v2 v2

E

Quasiparticle vacuum=
ground state of an even-
even nucleus. 

One-quasiparticle state.

Population v2 of pairs in single-particle levels for different ratios of the pairing strength 
to the average distance between single-particle levels. 



The quasiparticle Hamiltonian:

quasiparticle energy

=0 from the variational condition.

The quasiparticle transformation defines the representation in which the two-particle 
scattering processes across the Fermi level are absorbed in the definition of the new 
basis and the reference BCS-state.  

The total Hamiltonian relative to U0:

quasiparticle residual interaction





Static Self-
Consistent Mean-

Field 
Approximations



Theories of Nuclear Structure

microscopic

phenomenological

Ab initio approaches - start 
from a given NN force
-GFMC
-no core shell model
-coupled cluster calculations
-unitary  correlator method

Mac-mic approach
-liquid drop model plus
shell corrections
-phenomenological input

Microscopic models based 
on effective interactions or 
effective energy-density 
functionals

Large scale Shell Model
calculations

Self-consistent
mean-field models



The Nuclear Many-Body Problem

A~
16 A~

60

0 ħω Shell Model

Self-c
onsist

ent m
ean-fie

ld methodsAb initio few-body
calculations (GFMC)
No-core Shell Model



Self-consistent mean-field models

Mean-field approximation: the dynamics of the nuclear many-body system is 
represented by independent nucleons moving in a
self-consistent potential.

Self-consistent potential: corresponds to the actual density distribution for 
a given nucleus.

SCMF models approximate the exact energy-density functional with powers 
and gradients of ground-state nucleon densities. The density functional is not 
necessarily related to any given NN potential.

Advantages of SCMF models (over the Shell Model approach): 

• global effective nuclear interactions (used for all nuclei!)
• description of arbitrarily heavy nuclei, including superheavy elements
• intuitive picture of intrinsic shapes



The General Variational Principle

-any state which makes the functional E[Ψ] 
stationary, when |Ψ> is allowed to vary over the 
whole Hilbert space, is an eigenstate of the 
hamiltonian H with the eigenvalue E.

- variation:

- if this is satisfied for any variation ⇒

Trial wave function:

• single Slater determinant ≡ Hartree-Fock approximation
• quasi-particle vacuum ≡ Hartree-Fock-Bogoliubov approximation
• linear combination of a finite number of Slater determinants ≡ Shell 

Model
• continuous superposition of Slater determinants ≡ Hill-Wheeler equation



The Hartree-Fock Approximation

1. Basics of a mean-field description 

The basic building block of any mean-field model is a set of single-nucleon wave functions:

…the number of single-particle wave functions  N wf is larger than the number of nucleons A

Creation operator for a nucleon 
in a single-particle state i

Creation operator for 
eigenstates of position

HF approximation: the state of a nucleus is described by a Slater determinant:



2. Single-particle density matrix

…the density operator associated with the Slater determinant |Φ> can be expressed in 
terms of the single-nucleon orbitals:

A completely antisymmetric state |Φ> is a Slater determinant only if the corresponding 
density matrix ρ is a projector onto the Hilbert space spanned by occupied single-particle 
orbitals:



3. Hartree-Fock equations

…the hamiltonian of the system: sum of a kinetic energy and a two-body potential:

…the expectation value in a Slater determinant |Φ >:

defines the energy E as a functional of the single-particle density matrix ρ associated with the 
state |Φ >.

the variational equation:

The Hartree-Fock hamiltonian:
…hermitian operator acting in 
the space of single-particle 
states



…from the variational equation:

Hartree-Fock equation

The solution of the Hartre-Fock equation is a single-particle basis in which both h and ρ are 
diagonal.

HF orbitals

The HF equation is non-linear!

Iterative solution:

1) initial guess for the HF orbitals

2) with this density matrix ρ construct the HF hamiltonian h

3) Diagonalize h:  new set of HF orbitals

Repeat steps 2) and 3) until two successive calculations give the same HF orbitals to a 
desired accuracy:    self-consistent HF Hamiltonian.



The Hartree-Fock-Bogoliubov Approximation

Pure Slater determinants → occupation numbers n={0,1}. This is strictly valid only for doubly 
magic nuclei. All the others have partially occupied shells with a high density of almost 
degenerate states that are mixed by the residual two-body interaction: nuclear pairing scheme.

1. Pairing correlations

…concept of independent quasi-particles defined by the Bogoliubov transformation:

which relates single-particle states to quasiparticle states. In compact notation: 

→ the transformation matrix is unitary.



The ground state of the system is given then by the condition to be the quasi-
particle vacuum:

…quasi-particle wave functions in coordinate space: 

The single-particle density:

The pair tensor:

The completely antisymmetric state |Φ > is a quasiparticle vacuum only if the associated 
generalized density matrix:

satisfies the relations:



2. Hartree-Fock-Bogoliubov equations

…derived from the variational principle by using a quasiparticle vacuum as the trial wave 
function.

The qp vacuum is not an eigenstate of the particle number operator → additional constraint: 
the average number of particles = number of particles in the system.

…minimize the expectation value of the hamiltonian:



Hartree-Fock hamiltonian Pairing field

The quasiparticle hamiltonian:

…the variational equation:

Hartree-Fock-Bogoliubov equation



the HFB equation is nonlinear. Solution by iteration.

1) initial guess for the density and pair matrices ρ and κ

2) calculate the Hartree-Fock hamiltonian h and pairing field Δ

3) solve the eigenvalue HFB equation

4) from the eigenvectors evaluate the new density and pair matrices.
The trace of the density matrix will not, in general, be equal to the 
number of particles in the system -> change the chemical potential
μ → μ + δμ until the trace equals the desired number of particles.

5) repeat steps 2) → 4) until two successive calculations give the 
same density and pair matrices to a desired accuracy.  

The stationary value of the energy functional:

1. Quasiparticle basis φn → diagonalizes the generalized one-body matrix R
2. Canonical basis ψi → diagonalizes the one-body density ρ
3. Hartee-Fock basis → diagonalizes the mean-field Hamiltonian h



3. Symmetries and constraints

§ symmetries related to the shape of the nucleus – spherical, axial quadrupole, triaxial 
quadrupole, octupole

§ time reversal symmetry – for even-even nonrotating nuclei. The creation of a quasiparticle
or the rotation of the nucleus breaks time-reversal symmetry.

The landscape of the energy as a function of a shape degree of freedom is explored with the 
help of constraints.

The equations of motion are obtained by minimization of a Routhian:

with a constraint on the expectation value:





4. The BCS approximation

…well defined only in the case of time-reversal invariance -> Kramers degeneracy 
of single-particle states: for time-conjugate partners

The BCS approximation: forces the pairing 
potential to be diagonal in the basis of the 
eigenstates of the mean-field potential:

The pairing problem reduces to the determination of occupation amplitudes by solving the gap 
equation:

The two-component wave functions become simply: 



5. Local densities and currents

The full density matrix can be decomposed into four separate spin-isospin terms:

where:

For pure proton and neutron states only the α = 0 components of the isovector densities 
contribute.
There are six local densities and currents that can be derived from the full density matrix. 
We omit the second index in the densities, and with T=0 or 1: 



Local densities and currents:

T=0 density:

T=1 density: 

T=0 spin density:

T=1 spin density:

Current:

Spin-current tensor:

Kinetic density:

Kinetic spin-density:



Choices for the effective interaction

1. MEAN-FIELD EFFECTIVE INTERACTIONS

Gogny interaction: sum of two Gaussians with space, spin and isospin exchange mixtures. In 
addition, a density-dependent interaction plus a spin-orbit term. 

Exchange operators:

The Gogny interaction is used both in the mean-field and pairing channels.



Skyrme interactions

In the Skyrme Hartree-Fock approach, the total binding energy is given by the sum of the kinetic 
energy, the Skyrme energy functional that models the effective interaction between nucleons, the 
Coulomb energy, the pair energy, and corrections for spurious motions: 

Contains only
time-even dens.

Dependence on
time-odd currents

does not contribute for
even-even nuclei!

Density-dependent
coefficients

The Skyrme energy functional: 



Single-particle hamiltonian: 

The contribution from the Skyrme interaction to the single-particle Hamiltonian:

where:

…the local potentials are calculated from:

time-even:

time-odd:

The time-odd fields A, C, and S contribute to the single-particle Hamiltonian only in situations 
where the intrinsic time-reversal symmetry is broken and the Kramers degeneracy of single-
particle levels is removed.



2. PAIRING CORRELATIONS

…pairing-energy functional:

corresponds to the density-dependent two-body zero-range local pairing force:

Volume pairing
ρc → ∞

Surface pairing 
ρc ≈ ρnm

The pairing strengths Vp,n are adjusted phenomenologically to reproduce the odd-even staggering of 
energies in selected chains of nuclei.
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1. Binding Energies 

Microscopic Skyrme-Hartree-Fock-Bogoliubov mass tables:

Differences between
experimental and 
calculated masses as
a function of the 
neutron number.

Root Mean Square 
Deviation: 0.56 MeV
with respect to the 
2353 measured masses
of nuclei with N and 
Z ≥ 8.

Applications: ground-state properties

FURTHER EXPLORATIONS OF SKYRME-HARTREE-FOCK- . . . PHYSICAL REVIEW C 93, 034337 (2016)

TABLE III. Parameters of Eq.(11) for the collective correction.

HFB-30 HFB-31 HFB-32 HFB-29

b (MeV) 0.74 0.73 0.73 0.80
c 10 10 10 10
d (MeV) 3.3 3.3 3.3 3.9
l 13 13 14 16
β0

2 0.1 0.1 0.1 0.1

Table IV. The first line gives the model error σmod, as defined by
Eqs. (42) and (43) of Ref. [38], for the complete data set of 2353
nuclei. The usual rms and mean (experimental-calculated)
deviations are shown in the next two lines; the difference
between lines 1 and 2 lies in the fact that σmod is defined to
remove at least partially the experimental errors that contribute
to the rms error, thereby giving a better estimate of the intrinsic
error of the model. In any case, both the model and rms
errors are minimal for model HFB-31, although the differences
between HFB-30 and HFB-31 are arguably insignificant. Lines
4 and 5 give the rms and mean deviations for a subset consisting
of the most neutron-rich measured nuclei, here taken as the 257
nuclei with neutron-separation energies Sn ! 5 MeV. In this
region of the nuclear chart, one of particular interest from
the standpoint of our intended applications, the superiority of
model HFB-31 is much more striking. The next two pairs of
lines show the rms and mean deviations for the Sn and the
β-decay energies Qβ of all measured nuclei; these differential

TABLE IV. The first line gives the model error [38] on all the 2353
measured masses [16]. The following four pairs of lines give the rms
(σ ) and mean (ε̄) deviations between experiment and predictions for
the three models of this paper as well as for the HFB-29 model. The
first pair of lines refers to all the 2353 measured masses M that were
fitted [16], the second pair to the masses Mnr of the subset of 257
neutron-rich nuclei with Sn ! 5.0 MeV, the third pair to the neutron
separation energies Sn (2199 measured values), the fourth pair to
β-decay energies Qβ (2065 measured values), the fifth pair to charge
radii (884 measured values [32]), and the fifth pair to the model error
on the 26 experimental neutron skin thicknesses from Ref. [47] or the
10 thicknesses with experimental error smaller than 0.04 fm. The last
line gives the predicted 208Pb charge radius.

HFB-30 HFB-31 HFB-32 HFB-29

σmod(M) [MeV] 0.564 0.561 0.576 0.521
σ (M) [MeV] 0.573 0.571 0.586 0.529
ε̄(M) [MeV] 0.003 −0.004 −0.007 −0.0252
σ (Mnr ) [MeV] 0.683 0.659 0.700 0.671
ε̄(Mnr ) [MeV] 0.038 −0.015 0.137 0.000
σ (Sn) [MeV] 0.474 0.464 0.489 0.438
ε̄(Sn) [MeV] −0.008 0.000 −0.007 −0.008
σ (Qβ ) [MeV] 0.589 0.578 0.601 0.540
ε̄(Qβ ) [MeV] 0.009 0.006 −0.004 0.006
σ (Rc) [fm] 0.026 0.027 0.027 0.026
ε̄(Rc) [fm] 0.001 0.002 0.000 0.001
σmod(26 θ )[fm] 0.009 0.005 0.012 0.013
σmod(10 θ )[fm] 0.012 0.005 0.016 0.016
θ ( 208Pb)[fm] 0.133 0.151 0.170 0.134
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FIG. 2. Difference between measured [16] and HFB-31 masses
as a function of the neutron number N .

quantities are of greater astrophysical relevance than the
absolute masses, both for the r-process and the outer crust
of neutron stars, and are also found to be better described by
the HFB-31 model than the other two new ones. The last five
lines in Table IV show that all models give essentially identical
high-quality fits to the charge-radius data, but that neutron-skin
thicknesses differ significantly and favor the HFB-31 model,
despite the large uncertainties still affecting such experiments.

We illustrate in Fig. 2 the quality of the HFB-31 fit by
plotting against N the difference Mexp − Mcalc for all the
2353 fitted nuclei. Qualitatively similar figures are obtained
for HFB-30 and HFB-32.

Although the global rms deviation for the HFB-31 mass
model is not quite as good as for each of the models from HFB-
23 to HFB-29 [12,22,26], it is more realistic than any of these
models in that it is the only one whose pairing takes account
of self-energy and has a density-gradient term. Moreover, the
measured neutron-rich nuclei are better fitted by HFB-31 than
by any other of our models except HFB-27∗, whose under-
lying pairing interaction is purely phenomenological, and the
resulting EOS of N*M is too soft to support the two massive
pulsars PSR J1614–2230 and PSR J0348+0432. Therefore,
this model is less appropriate for astrophysical applications.

We see from Table I that the strength parameter κq of our
density-gradient pairing term is always negative, i.e., it is
attractive. The presence of such a term can be understood
physically as originating in the two nucleons in question
tending to form a Cooper pairs through coupling with surface
vibrations, just as Cooper pairs in a metallic superconductor are
formed through coupling with lattice vibrations. Nevertheless,
we stress that the form we have adopted for the gradient term
in Eq. (9) is purely phenomenological, having been chosen for
simplicity, there being just one parameter for neutron pairing,
and one for proton pairing; also only the gradient of the total
density is involved. Such a pairing force should be appropriate
not only for the limiting case of finite nuclei and homogeneous
nuclear matter, but also for the intermediate case of the inho-
mogeneous nuclear matter of the inner crust of neutron stars.

Our attractive density-gradient term is to be contrasted with
the work of Ref. [39], which invoked a repulsive density-
gradient term to account for various kinks in isotopic chains
of measured charge radii. Not surprisingly, our models are

034337-5
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TABLE V. Parameters of infinite nuclear matter for the models
of this paper.

BSk30 BSk31 BSk32 BSk29

av [MeV] −16.089 −16.110 −16.126 −16.049
n0 [fm−3] 0.1586 0.1586 0.1584 0.1578
J [MeV] 30.0 31.0 32.0 30.0
L [MeV] 41.5 53.1 65.5 45.2
Ksym[MeV] −47.2 −15.8 19.3 −38.5
Kv [MeV] 243.8 244.0 244.1 245.5
K ′ [MeV] 302.4 303.0 303.6 274.5
M∗

s /M 0.84 0.84 0.84 0.80
M∗

v /M 0.73 0.73 0.74 0.73
G0 0.42 0.37 0.33 0.62
G′

0 0.97 0.97 0.97 0.95
nc(N*M) [fm−3] 0.99 1.01 1.03 0.99
nc(NeuM) [fm−3] 0.67 0.66 0.65 0.69

unable to reproduce the observed kinks, but if we had taken a
positive value of κq in order to do so the mass fits would have
deteriorated.

It should also be noted that the fit is found to be optimum
for a pairing cut-off energy ε# = 6.5 MeV above the Fermi
energy, a value significantly lower than the usual 16 MeV
obtained in all our previous forces. Such a low value of the
cut-off also ensures a good fit of the pairing strength to the
experimental 1S0 nucleon-nucleon phase shifts in the dilute
limit nq → 0 [40].

IV. PROPERTIES OF THE NEW MODELS

The most important parameters of INM are given in
Table V; they are defined as in Ref. [14]. except that we now
denote by nc(N*M) and nc(NeuM) the average baryon number
densities above which causality is violated in N*M and in pure
NeuM, respectively. Let us recall that causality is violated if
the speed of sound exceeds the speed of light.

It should be noted that the energy per nucleon av of
symmetric INM at the equilibrium density, n0, is large in
comparison to previously obtained values. This leads to a
rather stiff mass parabola that could affect the extrapolation
far away from stability, as discussed in Sect. IV H.

A. NeuM

As discussed in Sec. I, our new Skyrme forces were
adjusted to reproduce realistic NeuM EOSs. As shown in
Fig. 3, the resulting NeuM EOSs at subsaturation densities
are compatible with the quantum Monte Carlo calculations
of Ref. [19], as well as with the predictions of Ref. [41]
based on chiral effective field theory. Moreover, increasing
the symmetry coefficient significantly improves the EOS. This
figure also shows that the EOS that we refer to as LS3 appears
to be too soft in this density regime. At higher densities, Fig. 4
shows that the NeuM EOS obtained with our new forces are
consistent with realistic calculations.

As can be seen from Table V, causality in pure NeuM
is violated at densities above ∼0.65–0.67 fm−3 due to the

FIG. 3. Low-density zero-temperature EOS in NeuM for models
BSk30 (solid line), BSk31 (dashed line), and BSk32 (dotted line).
LS2 and LS3 correspond to the realistic EOSs referred to as V18
and BOB in Ref. [17], respectively. The shaded areas represent the
constraints of Ref. [19] (dark) and of Ref. [41] (light).

neglect of relativistic effects at those densities in the underlying
realistic EOSs of NeuM to which we have fitted our forces.
However, the EOS of N*M remains causal even in the most
massive stars, as we discuss in Sec. IV E.

B. Symmetry energy

The parameters J and L shown in Table V for each of the
models of this paper relate to the symmetry energy of INM: the
former is the value of this energy at the saturation density n0,
while the latter is defined by the density gradient of this energy
at the same density (see Ref. [14]). While the mass models of
this paper and of our Ref. [12] do not arrive at unique values
of J and L, they do show the usual correlation between these
two parameters, L increasing monotonically with J .
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n [fm-3]
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FIG. 4. Same as Fig. 3 for the high densities. The shaded area
represents the constraints obtained in Ref. [19].
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2. Shell structure 
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Figure 1: Proton (left panels) and neutron (right panels) Nilsson diagrams of 254No
obtained for the Skyrme EDF SLy4 (upper panels) and UNEDF2 (lower panels). At
spherical shapes, the orbitals are labelled with spherical quantum numbers. For SLy4, at
large deformations, the deformed single-particle orbitals are labelled by the expectation
values 〈ĵ‖〉 of the projection of the angular momentum on the axial-symmetry axis. For
UNEDF2, these orbitals are labelled by the Nilsson labels Ω[NnzΛ] determined using
code hfodd. Solid and dashed lines are used for the positive and negative parity states,
respectively.

13

Proton and neutron Nilsson diagrams of 254No calculated 
with the Skyrme EDF SLy4 and UNEDF2 functionals. 
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Figure 4: Experimental and calculated quasiparticle spectra in 249Bk and 251Cf, see text
for the convention used here. Experimental data are taken from Ref. [67] We label the
state with the full Nilsson label of the dominant component of the wave function only if
the squared amplitude of this component exceeds 50%. The exception is the 1/2[7] state
which is strongly mixed. However, the cumulative squared amplitude of the components
of the wave function with N = 7 in the structure of this state exceeds 90%. Thus, we
label it only by principal quantum number N and Ω.
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3. Observables of the Density Distribution

Comparison of r.m.s. radii of the charge distributions from spherical mean-field calculations. Filled 
diamonds: direct radius measurements; open diamonds: measurements of isotopic shifts.

and Broglia (1985) and Caurier et al. (2001) for an
analysis using shell-model calculations.

There is also a significant deviation in the trends for
Pb isotopes. The experimental trend exhibits a kink at
the doubly magic 208Pb. The relativistic mean-field cal-
culations reproduce this nicely, while the radii obtained
with most Skyrme Hartree-Fock forces crosses N!126
without any kink. It is argued by Reinhard and Flocard
(1995) and Sharma et al. (1995) that this hints at a dif-
ference in isovector spin-orbit force. The mismatch has
been cured by extending the spin-orbit force in the
Skyrme parametrization (see Sec. II.A.2) in the forces
SkI3 and SkI4, which better reproduce this kink at
208Pb. This is a nice example of how a comparison be-
tween different models has improved our understanding
of each model. However, the case is not yet settled, as
there exist arguments that the kink could equally well be
due to a density-dependent pairing interaction like that
in Eq. (71) (see Fayans et al., 2000 and Tajima, Flocard,
et al., 1993).

As for energies, looking at differences between radii
in an isotopic chain, i.e., isotopic shifts, often makes ef-
fects more visible.

From the experimental side, isotopic shifts can be
measured directly and with high precision by laser spec-
troscopy. This technique also allows us to deal with un-
stable isotopes. Thus there exists a rich pool of data and
a large body of literature; for a review see Otten (1989).
Amongst the prominent effects in this regime is the huge
even-odd staggering in proton-rich Hg isotopes which
can be related to a prolate-oblate shape isomerism
(Bengtsson et al., 1987). The effect is qualitatively pro-
vided by all mean-field models although quantitative
predictions about the transition point differ (Reinhard,
Reiss, et al., 2000). Most data on isotope shifts give indi-
rect information about collective ground-state correla-
tions (Reinhard and Drechsel, 1979; see also the above
example of Ca isotopes). These correlations have been
considered in early microscopic generator coordinate
calculations using the Gaussian overlap approximation

(Girod and Reinhard, 1982a). A more recent example
will be given in connection with low-energy excitations
in Fig. 21.

2. Neutron radii

Neutron radii would provide very valuable informa-
tion complementing the rich pool of data from charge
radii. Unfortunately, their experimental determination
has so far been model dependent because the strong
interaction is involved (Batty et al., 1989). There is hope
that a clean tool will be available soon from parity-
violating electron-nucleus scattering experiments
(Vretenar, Lalazissis, and Ring, 2000; Horowitz et al.,
2001). Reliable data on neutron radii will improve mod-
els in several respects. For example, there is a close con-
nection between the equation of state of neutron matter
and the neutron rms radius of 208Pb. See Brown (2000)
for the Skyrme Hartree-Fock method and Typel and
Brown (2001) for the relativistic mean-field model.

Other interesting phenomena related to the neutron
density are the presence of neutron skins (Hamamoto
and Zhang, 1995; Dobaczewski, Nazarewicz, and
Werner, 1996; Lalazissis et al., 1998b) or of neutron halos
(Sagawa, 1992; Hansen et al., 1995; Tanihata, 1996) far
from ! stability. Their description takes advantage of the
variational principle that self-consistently optimizes the
density profile (separately for neutrons and protons), a
feature that is absent in mic-mac approaches and limits
their use for neutron-rich systems.

One can establish a direct relation between isovector
forces and the neutron skin, defined as the difference
between neutron and proton radii (Reinhard, 1999; Sa-
gawa, 2002). Figure 12 shows the skin in Sn isotopes
predicted by various forces. It hints that larger skins are
produced by forces with large symmetry energy and
smaller skins by those with low asym . More thorough
variations of asym confirm that there is a unique relation
between skin and asymmetry energy within the current
standard form of the Skyrme Hartree-Fock interactions

FIG. 11. Comparison of rms radii of the charge distributions from spherical mean-field calculations. Experimental data are taken
from Nadjakov et al. (1994). Filled diamonds denote results from direct radius measurements, while open diamonds are obtained
from measurements of isotopic shifts.
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I. INTRODUCTION

The remarkable experimental progress in producing
and analyzing exotic nuclei has ushered in a renaissance
of nuclear structure models. One very successful theo-
retical approach is with self-consistent mean-field mod-
els, perhaps the leading theory for describing and pre-
dicting properties of heavy nuclei.

Intense research in recent years has produced a large
body of new material and insights. It is time to sort
through and to review this work. This article tries to
provide an up-to-date view of the self-consistent mean-
field (SCMF) models for nuclear structure and excita-
tions. In order to stay within the limits of a review ar-
ticle, we have reduced the material to the essentials and
tried to provide extensive citations to sources where
more details can be found. And yet we are sure that we
are missing some references which might be equally use-
ful. We apologize in advance and hope that this article
will be, nonetheless, instructive for a broad readership.

A. The nuclear many-body problem

Models for nuclear structure have been developed
since the early days of nuclear physics about 70 years
ago. The production of more and more new isotopes has
revived the interest in nuclear structure models in recent

years. The large variety of new modeling initiatives can
be grouped into three different approaches: ab initio
methods; self-consistent mean-field (SCMF) and shell-
model theories; and macroscopic models with a touch of
quantum shell structure. The present review concen-
trates on the various brands of SCMF theory. Nuclear
SCMF models are in many respects analogs of density-
functional theory (Hohenberg and Kohn, 1964; Kohn
and Sham, 1965), which gives a very successful descrip-
tion of all kinds of many-electron systems (Jones and
Gunnarsson, 1989; Parr and Yang, 1989; Dreizler and
Gross, 1990; Nagy, 1998; Kohn, 1999; Singh and Deb,
1999; Calvayrac et al., 2000; Onida et al., 2002). In order
to put this level of approximation into perspective, we
briefly summarize here the status of the competing ap-
proaches, staying at a level of citations that is by no
means comprehensive.

Traditional ab initio methods start from a given
nucleon-nucleon potential, which is an effective interac-
tion to describe nucleon-nucleon scattering data
(Machleidt and Slaus, 2001). It has a large repulsive
core, which means that nuclear matter is a strongly cor-
related quantum liquid. A description requires highly
developed many-body theories like the relativistic
Brueckner-Hartree-Fock (Serot and Walecka, 1986;
Brockmann and Machleidt, 1990; Dickhoff and Müther,
1992) or correlated basis functions (Pandharipande
et al., 1997; Heiselberg and Pandharipande, 2000). All
these treatments reproduce the basic features of nuclear
saturation. At second glance, however, there is an inter-
esting distinction: all approaches that employ strictly the
given nucleon-nucleon potential fail to yield the satura-
tion point of nuclear matter quantitatively, while those
models that employ an additional (empirical) three-
body force perform very well. The microscopic origin of
this three-body force is still under discussion. Intrinsic
nucleonic degrees of freedom may play a role, and very
recently models have been proposed which try to draw
lines directly from underlying QCD formulations to
nuclear structure (Lutz et al., 2000; Kaiser et al., 2002).
The methods are so involved that almost all of these
investigations have been done in homogeneous nuclear
(or neutron) matter. Very recent developments in com-
putational techniques allow ab initio calculations of fi-
nite nuclei, currently reaching about as far as the carbon
nuclei (Navratil et al., 2000). The problem of a three-
body force persists, of course, in these investigations as
well.

The other extreme of nuclear models is the macro-
scopic nuclear liquid-drop model (Myers and Swiatecki,
1982), which parametrizes the energy in terms of global
properties such as volume energy, asymmetry energy,
surface energy, etc. The actual parameters are fitted phe-
nomenologically. The liquid-drop model thus describes
very well the average trends of nuclear binding energies.
It is usually augmented by a shell-correction energy that
approximates the quantal shell effects not taken into ac-
count in the liquid-drop model. This correction energy is
calculated from the single-particle spectrum obtained
using a phenomenologically adjusted single-particle po-
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tential (Brack et al., 1972). Both combined constitute the
microscopic-macroscopic (mic-mac) method which has
been tuned to very high descriptive power. The root-
mean-square error on binding energies is nowadays be-
low 0.7 MeV (Möller et al., 1995). The mic-mac method,
however, relies on a large amount of ad hoc modeling,
particularly around the expected nuclear mean field.
This leaves uncertainties when extrapolating the model
into the unknown regime of exotic nuclei.

In between the two extremes of ab initio and liquid-
drop models, there are two models that work at a micro-
scopic level but employ effective interactions to allow a
treatment in either restricted spaces or forms of many-
body wave functions. The first of these are the shell-
model approaches. In the shell model, one takes for the
mean field a standard phenomenological single-particle
model but then performs a configuration-mixing calcula-
tion involving all many-body states that can be con-
structed using a more or less broad band of single-
nucleon states around the Fermi energy (Brown and
Wildenthal, 1988). The residual interaction in the active
space is usually fitted phenomenologically. Hjorth-
Jensen et al. (1992) have recently come up with micro-
scopic determinations using as effective interaction a G
matrix from ab initio calculations. The problem of the
proper saturation point which plagues ab initio models is
circumvented by using a phenomenologically prescribed
mean field. The dimensions of these shell-model calcu-
lations grow explosively with system size. Thus Monte
Carlo techniques or specific diagonalization schemes
have been developed to tackle heavier nuclei. A large
body of surveys has been completed with these new
methods (Koonin et al., 1997a, 1997b; Caurier and
Nowacki, 1999; Otsuka, 2001; Otsuka et al., 2001).

The SCMF methods, to which the rest of this artcle
will be devoted, also fall in between ab initio and mic-
mac methods, but they take a different path than the
shell model. They concentrate on an unprejudiced, self-
consistent determination of the nuclear mean field. To
this end, they employ effective interactions which are
tuned to their primary use in mean-field calculations.
The concept is closely related to energy-density-
functional theory in electronic systems. Nuclear density
functional theory is outlined by Petkov and Stoitsov
(1991) and Fayans et al. (2000) for nonrelativistic models
and by Speicher et al. (1991, 1993) and Schmid et al.
(1995a) for relativistic ones.

However, electronic energy functionals of high accu-
racy may be derived ab initio from electron gas theory.
In the nuclear problem, the corresponding approach has
not yet been as successful. Attempts have been made to
map nuclear matter theory onto mean-field models for
finite nuclei using the local-density approximation
(LDA; Müther et al., 1990). These yield in a straightfor-
ward manner fair results for energies and radii, but for
quantitative purposes, energy functionals with phenom-
enologically determined parameters are far more accu-
rate. Thus one proceeds in a more phenomenological
manner: the form of the effective energy functional is
motivated from ab initio theory, but the actual param-

eters (around 10) are adjusted by extensive fits to
nuclear structure data. This will be discussed in detail in
the theoretical section of this review.

The nuclear SCMF models have been used exten-
sively since the 1970s. Effective interactions were first
derived at that time and applied to a large variety of
problems. However, there were still several restrictions
imposed on the models which limited the range of appli-
cations and left room for mic-mac models. The main
restrictions were related to the symmetries of the wave
functions, which limited application of the model to
ground-state properties of even nuclei. The situation
changed in the 1990s when nearly symmetry-
unrestricted SCMF calculations became possible.
Thanks to this development, studies of rotational bands
in heavy nuclei could be systematically performed; in
particular, the SCMF models encountered great success
in studies of superdeformed rotational bands in isotopes
around Dy and Hg. This result was not obvious, since
the energy density functionals that were used were not
at all adjusted to this kind of phenomenon. To give an-
other example, systematic calculations of superheavy
nuclei were also performed, throwing doubt on some of
the conclusions drawn from macroscopic models. At the
same time, intense experimental developments greatly
increased our knowledge of nuclei far from stability.
This in turn had an impact on effective interactions,
which were improved in several ways over the last de-
cade. The success of the SCMF method has now reached
a point where one has to introduce correlations beyond
the mean field to improve further on the quality of the
description. Several developments along this line have
been started in recent years and the first applications
seem to be very promising.

We plan to review in this paper the present state of
developments, considering the three most widely used
variants of nuclear SCMF models. We try to give a com-
prehensive account of the underlying formal framework
and to demonstrate model performance with a brief
guided tour through a broad range of applications.

B. The Hartree-Fock-Bogoliubov method

This section is devoted to the general features of
nuclear mean-field models. It starts with the basic build-
ing blocks and presents the formulation of the coupled
mean-field equations at a level that is common to all
mean-field models. The actual models are specified later
in Sec. II by way of their effective energy functionals.
For a more detailed introduction into the Hartree-Fock-
Bogoliubov (HFB) method see Mang (1975), Goodman
(1979), Ring and Schuck (1980), and Blaizot and Ripka
(1985).

The notion of a ‘‘mean field’’ deserves further com-
ment. We concentrate in this review on self-consistent
models, where the potential well for nucleons is com-
puted from the nucleonic wave functions. This produces
a theory at the level of the Hartree-Fock approximation,
which is inadequate for a description of nuclear proper-
ties that are strongly influenced by pairing correlations.
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Calculated potential energy surface of 186Pb. Spherical, oblate and prolate minima are indicated by thick 
vertical black lines. Calculations are performed on a cartesian mesh. The β2 parameter expresses the 
elongation of the nucleus along the symmetry axis, while the γ parameter relates to the degree of triaxiality in 
the deformation. The γ parameter is defined such that γ=0 corresponds to a prolate shape and γ=60 to an 
oblate shape. 



minimum or an inflexion point at a !2 value around 0.5.
For this reason, it is generally assumed that vibrational
and rotational corrections have to be included to de-
scribe nuclei in this mass region. A typical vibrational
zero-point energy here would be around 3 MeV and this
corresponds to fluctuations "!2#!0.4. We shall come
back to this point in Sec. VI.F.2. The softness of the
potential-energy surfaces increases for N"22, and a de-
formed minimum appears for N"24. The deformation
energy increases further for N"26, and the next magic
number, N"28, by no means restores sphericity.

This tendency to deformation for nuclei far from sta-
bility may be related to the shell quenching that is likely
to appear towards drip lines (see also Sec. VI.B.3). The
effect is demonstrated in the lower panel of Fig. 14,
showing the evolution of neutron levels along the N
"28 chain as a function of the number of protons. The
N"28 gap shrinks when going from 20

48Ca28 towards the
neutron drip line (at spherical shape, the next nucleus
10
38Ne28 has a positive neutron Fermi energy). Already for
Z"16, the gap at N"28 is too small to counterbalance
the deformation induced by the nonmagic proton num-
ber Z"16 and to drive the nucleus to spherical symme-
try (as is the case for N"20).

3. Fission barriers

Fission has been one of the major motivations for de-
veloping models of nuclear collective motion (Bohr and
Wheeler, 1939; Hill and Wheeler, 1953). It is also a criti-
cal test case for mean-field models as a microscopic pic-
ture of collectivity (see, for example, Sec. III.A.1). On
the experimental side, there exists a large pool of infor-
mation on fission barriers deduced by model analysis
from spontaneous and induced fission (Specht, 1974;
Bjørnholm and Lynn, 1980). On the theoretical side, fis-
sion barriers are often used as a benchmark for mean-
field models (Bartel et al., 1982; Berger et al., 1984), as
they probe the surface tension of the parametrizations
(see also Tondeur, 1985; Bender et al., 2000a).

The fission paths are special collective paths which
evolve from the ground-state deformation to the outer
barrier and then slide asymptotically down the Coulomb
valley. As with any collective path, they are represented
by a succession of deformed mean-field states $!%q&'.
An unambiguous self-consistent definition of the path is
given by the adiabatic TDHF equations (Baranger and
Vénéroni, 1978; Goeke and Reinhard, 1978). Most prac-
tical calculations use quadrupole constrained mean-field
calculations (Flocard et al., 1973) as an intuitive approxi-
mation. Furthermore, correlation corrections play a role
in fission. The zero-point energies for vibration and ro-
tation modify the barriers by about 2 MeV (Reinhard
and Goeke, 1979, 1987). The way pairing correlations
are described also has a critical influence, since the path
connects minima with low level density and barriers with
high level density.

Fission paths explore many shape degrees of freedom
including triaxiality and reflection-asymmetric shapes.
There are usually two (or more) separate valleys in the

multidimensional landscape (see, for example, Berger
et al., 1984). A typical example is given by the distinction
of fusion and fission paths which differ in their hexade-
capole moment. An additional difficulty arises from the
fact that separate valleys found in a calculation might be
an artifact from an overly restricted symmetry (e.g.,
axial) and merge if computed more generally (e.g., tri-
axially); see the example given by Bender, Rutz, et al.
(1998). Finally, it might not be sufficient to compute only
the potential-energy surfaces along the fission path.
Strong variations in the collective masses can cause the
fission path to deviate from the minimum-potential line
(see, for example, Giannoni and Quentin, 1980a, 1980b).
It is clear that fission studies are a very complex task and
many technical improvements are still required.

As a test case, we consider the fission barrier of 240Pu,
which has been the traditional benchmark for the per-
formance of mean-field models. The description of the
double-humped fission barrier of actinides was one of
the first prominent successes of the shell-correction
method. It also became one of the first applications of
constrained self-consistent calculations with Skyrme in-
teractions (Flocard et al., 1974), the Gogny force
(Berger et al., 1984), and the relativistic mean-field
method (Blum et al., 1994; Rutz et al., 1995).

Figure 15 shows as a typical example the potential-
energy surfaces for 240Pu computed with the SkI4 inter-
action. The oscillations of the surfaces are due to shell
fluctuations, while the liquid-drop-model energy would
give one broad smooth barrier. The actual size of the
shell effects depends strongly on the shapes that are in-
volved in the calculation. Relaxing symmetries often de-
creases the barriers, as can be seen from the axial and
triaxial paths at the first barrier and the (axial)
reflection-symmetric and reflection-asymmetric paths at
the second barrier. The paths with steep slopes at large
!2 correspond to symmetric and asymmetric entrance
channels for fusion. The two approaching nuclei have to

FIG. 15. Paths in the deformation energy landscape of 240Pu
calculated with the SkI4 interaction. The solid line corresponds
to axial quadrupole and octupole (reflection asymmetric) con-
straints, the dashed line to triaxial quadrupole constraints, the
dotted line to axial quadrupole constraint only. The two steep
lines correspond to the symmetric (dotted line) and asymmet-
ric (solid line) fusion paths. Shapes along the paths are indi-
cated by the density contours at (0"0.07 fm#3. From Bender
(1998).
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5. Fission barriers 

Paths in the deformation energy landscape of 240Pu calculated with the SkI4 force. The solid line 
corresponds to axial quadrupole and octupole (reflexion asymmetric) constraints, the dashed line to 
triaxial quadrupole constraints, the dotted line to axial quadrupole constraint only.

Axial quadrupole +
Octupole constraints

Relaxing symmetries often 
decreases the barriers !

Triaxial quadrupole
constraint

Axial quad. constraint

tential (Brack et al., 1972). Both combined constitute the
microscopic-macroscopic (mic-mac) method which has
been tuned to very high descriptive power. The root-
mean-square error on binding energies is nowadays be-
low 0.7 MeV (Möller et al., 1995). The mic-mac method,
however, relies on a large amount of ad hoc modeling,
particularly around the expected nuclear mean field.
This leaves uncertainties when extrapolating the model
into the unknown regime of exotic nuclei.

In between the two extremes of ab initio and liquid-
drop models, there are two models that work at a micro-
scopic level but employ effective interactions to allow a
treatment in either restricted spaces or forms of many-
body wave functions. The first of these are the shell-
model approaches. In the shell model, one takes for the
mean field a standard phenomenological single-particle
model but then performs a configuration-mixing calcula-
tion involving all many-body states that can be con-
structed using a more or less broad band of single-
nucleon states around the Fermi energy (Brown and
Wildenthal, 1988). The residual interaction in the active
space is usually fitted phenomenologically. Hjorth-
Jensen et al. (1992) have recently come up with micro-
scopic determinations using as effective interaction a G
matrix from ab initio calculations. The problem of the
proper saturation point which plagues ab initio models is
circumvented by using a phenomenologically prescribed
mean field. The dimensions of these shell-model calcu-
lations grow explosively with system size. Thus Monte
Carlo techniques or specific diagonalization schemes
have been developed to tackle heavier nuclei. A large
body of surveys has been completed with these new
methods (Koonin et al., 1997a, 1997b; Caurier and
Nowacki, 1999; Otsuka, 2001; Otsuka et al., 2001).

The SCMF methods, to which the rest of this artcle
will be devoted, also fall in between ab initio and mic-
mac methods, but they take a different path than the
shell model. They concentrate on an unprejudiced, self-
consistent determination of the nuclear mean field. To
this end, they employ effective interactions which are
tuned to their primary use in mean-field calculations.
The concept is closely related to energy-density-
functional theory in electronic systems. Nuclear density
functional theory is outlined by Petkov and Stoitsov
(1991) and Fayans et al. (2000) for nonrelativistic models
and by Speicher et al. (1991, 1993) and Schmid et al.
(1995a) for relativistic ones.

However, electronic energy functionals of high accu-
racy may be derived ab initio from electron gas theory.
In the nuclear problem, the corresponding approach has
not yet been as successful. Attempts have been made to
map nuclear matter theory onto mean-field models for
finite nuclei using the local-density approximation
(LDA; Müther et al., 1990). These yield in a straightfor-
ward manner fair results for energies and radii, but for
quantitative purposes, energy functionals with phenom-
enologically determined parameters are far more accu-
rate. Thus one proceeds in a more phenomenological
manner: the form of the effective energy functional is
motivated from ab initio theory, but the actual param-

eters (around 10) are adjusted by extensive fits to
nuclear structure data. This will be discussed in detail in
the theoretical section of this review.

The nuclear SCMF models have been used exten-
sively since the 1970s. Effective interactions were first
derived at that time and applied to a large variety of
problems. However, there were still several restrictions
imposed on the models which limited the range of appli-
cations and left room for mic-mac models. The main
restrictions were related to the symmetries of the wave
functions, which limited application of the model to
ground-state properties of even nuclei. The situation
changed in the 1990s when nearly symmetry-
unrestricted SCMF calculations became possible.
Thanks to this development, studies of rotational bands
in heavy nuclei could be systematically performed; in
particular, the SCMF models encountered great success
in studies of superdeformed rotational bands in isotopes
around Dy and Hg. This result was not obvious, since
the energy density functionals that were used were not
at all adjusted to this kind of phenomenon. To give an-
other example, systematic calculations of superheavy
nuclei were also performed, throwing doubt on some of
the conclusions drawn from macroscopic models. At the
same time, intense experimental developments greatly
increased our knowledge of nuclei far from stability.
This in turn had an impact on effective interactions,
which were improved in several ways over the last de-
cade. The success of the SCMF method has now reached
a point where one has to introduce correlations beyond
the mean field to improve further on the quality of the
description. Several developments along this line have
been started in recent years and the first applications
seem to be very promising.

We plan to review in this paper the present state of
developments, considering the three most widely used
variants of nuclear SCMF models. We try to give a com-
prehensive account of the underlying formal framework
and to demonstrate model performance with a brief
guided tour through a broad range of applications.

B. The Hartree-Fock-Bogoliubov method

This section is devoted to the general features of
nuclear mean-field models. It starts with the basic build-
ing blocks and presents the formulation of the coupled
mean-field equations at a level that is common to all
mean-field models. The actual models are specified later
in Sec. II by way of their effective energy functionals.
For a more detailed introduction into the Hartree-Fock-
Bogoliubov (HFB) method see Mang (1975), Goodman
(1979), Ring and Schuck (1980), and Blaizot and Ripka
(1985).

The notion of a ‘‘mean field’’ deserves further com-
ment. We concentrate in this review on self-consistent
models, where the potential well for nucleons is com-
puted from the nucleonic wave functions. This produces
a theory at the level of the Hartree-Fock approximation,
which is inadequate for a description of nuclear proper-
ties that are strongly influenced by pairing correlations.
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I. INTRODUCTION

The remarkable experimental progress in producing
and analyzing exotic nuclei has ushered in a renaissance
of nuclear structure models. One very successful theo-
retical approach is with self-consistent mean-field mod-
els, perhaps the leading theory for describing and pre-
dicting properties of heavy nuclei.

Intense research in recent years has produced a large
body of new material and insights. It is time to sort
through and to review this work. This article tries to
provide an up-to-date view of the self-consistent mean-
field (SCMF) models for nuclear structure and excita-
tions. In order to stay within the limits of a review ar-
ticle, we have reduced the material to the essentials and
tried to provide extensive citations to sources where
more details can be found. And yet we are sure that we
are missing some references which might be equally use-
ful. We apologize in advance and hope that this article
will be, nonetheless, instructive for a broad readership.

A. The nuclear many-body problem

Models for nuclear structure have been developed
since the early days of nuclear physics about 70 years
ago. The production of more and more new isotopes has
revived the interest in nuclear structure models in recent

years. The large variety of new modeling initiatives can
be grouped into three different approaches: ab initio
methods; self-consistent mean-field (SCMF) and shell-
model theories; and macroscopic models with a touch of
quantum shell structure. The present review concen-
trates on the various brands of SCMF theory. Nuclear
SCMF models are in many respects analogs of density-
functional theory (Hohenberg and Kohn, 1964; Kohn
and Sham, 1965), which gives a very successful descrip-
tion of all kinds of many-electron systems (Jones and
Gunnarsson, 1989; Parr and Yang, 1989; Dreizler and
Gross, 1990; Nagy, 1998; Kohn, 1999; Singh and Deb,
1999; Calvayrac et al., 2000; Onida et al., 2002). In order
to put this level of approximation into perspective, we
briefly summarize here the status of the competing ap-
proaches, staying at a level of citations that is by no
means comprehensive.

Traditional ab initio methods start from a given
nucleon-nucleon potential, which is an effective interac-
tion to describe nucleon-nucleon scattering data
(Machleidt and Slaus, 2001). It has a large repulsive
core, which means that nuclear matter is a strongly cor-
related quantum liquid. A description requires highly
developed many-body theories like the relativistic
Brueckner-Hartree-Fock (Serot and Walecka, 1986;
Brockmann and Machleidt, 1990; Dickhoff and Müther,
1992) or correlated basis functions (Pandharipande
et al., 1997; Heiselberg and Pandharipande, 2000). All
these treatments reproduce the basic features of nuclear
saturation. At second glance, however, there is an inter-
esting distinction: all approaches that employ strictly the
given nucleon-nucleon potential fail to yield the satura-
tion point of nuclear matter quantitatively, while those
models that employ an additional (empirical) three-
body force perform very well. The microscopic origin of
this three-body force is still under discussion. Intrinsic
nucleonic degrees of freedom may play a role, and very
recently models have been proposed which try to draw
lines directly from underlying QCD formulations to
nuclear structure (Lutz et al., 2000; Kaiser et al., 2002).
The methods are so involved that almost all of these
investigations have been done in homogeneous nuclear
(or neutron) matter. Very recent developments in com-
putational techniques allow ab initio calculations of fi-
nite nuclei, currently reaching about as far as the carbon
nuclei (Navratil et al., 2000). The problem of a three-
body force persists, of course, in these investigations as
well.

The other extreme of nuclear models is the macro-
scopic nuclear liquid-drop model (Myers and Swiatecki,
1982), which parametrizes the energy in terms of global
properties such as volume energy, asymmetry energy,
surface energy, etc. The actual parameters are fitted phe-
nomenologically. The liquid-drop model thus describes
very well the average trends of nuclear binding energies.
It is usually augmented by a shell-correction energy that
approximates the quantal shell effects not taken into ac-
count in the liquid-drop model. This correction energy is
calculated from the single-particle spectrum obtained
using a phenomenologically adjusted single-particle po-
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