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Figure 1. Schematic illustration of the features most relevant to the !ssion phenomenon.
The red curve depicts (in a one-dimensional projection) the potential energy as a function
of the elongation; the ground state is at the lowest minimum, and the shape-isomeric
state is at the second minimum. From these states it is possible to tunnel through the
potential barrier. Tunnelling is also relevant for neutron or photon induced !ssion when
the resulting initial state lies below the !ssion barrier. If the initial state is excited above
the !ssion barrier, it may undergo a complicated shape evolution crossing the barrier
from above. Once the system !nds itself beyond the barrier, it relatively quickly descends
towards scission. There it divides into two nascent fragments, which subsequently move
apart under the in"uence of their mutual Coulomb repulsion while gradually attaining
their equilibrium shapes and become primary fragments. Primary fragments then de-
excite by evaporating neutrons, radiating photons, and undergoing β decay.

In addition to an SF, !ssion can be induced by a variety of nuclear reactions. The !ssion-
induced processes include: neutron capture (responsible for energy production in !ssion reac-
tors), electron capture and beta decay, photo!ssion, and reactions involving charged particles
and heavy ions. In all these processes, the !ssioning nucleus is created in an excited state,
which may lie above or below the !ssion barrier.

Theoretical descriptions of !ssion induced by fast probes often assume the creation of
a compound nucleus at a given thermal excitation energy. However, as discussed later, that
assumption might be ill-founded for fast probes because the nuclear system may not have
suf!cient time to thermalise before undergoing !ssion. This becomes increasingly important
at higher energies where pre-equilibrium processes play an increasingly signi!cant role and
may lead to the emission of one or more nucleons before equilibrium is reached. Moreover, as
the excitation energy of the compoundnucleus is increased, neutron evaporation competes ever
more favourablywith !ssion and as a result, one ormore neutronsmay be evaporated before!s-
sion occurs (multi-chance!ssion). In addition, for non-thermalised systems one should develop
approaches using !xed energy rather than !xed temperature.

2.2. Important observables

When talking about !ssion observables, it is important to remember that what is often
considered ‘experimental’ is often the result of an indirect process, in which a quantity of
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F-69622 Villeurbanne, France
2 Department of Theoretical Physics and Department of Nuclear Physics, Research
School of Physics, Australian National University, Canberra, Australian Capital
Territory 2601, Australia
3 CEA, DAM, DIF, F-91297 Arpajon, France
4 Department of Physics and Institute for Nuclear Theory, University of Washington,
Seattle, Washington 98195, United States of America
5 Tokyo Institute of Technology, 152-8550 Tokyo, Japan
6 Department of Physics, University of York, Heslington, York YO10 5DD, United
Kingdom
7 Helsinki Institute of Physics, FI-00014, University of Helsinki, Finland
8 Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, 02-093
Warsaw, Poland
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Two basic microscopic approaches to the description of induced fission dynamics: 

The time-dependent generator coordinate method (TDGCM) 

Verriere and Regnier The TDGCM in Nuclear Physics

the one-body density). The generator state
∣

∣φ(q)
〉

is then obtained
by minimizing the Routhian

R[φ(q)] = EHFB[φ(q)]−
∑

i

λi

(

〈

φ(q)
∣
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∣

∣φ(q)
〉

− qi
)2

, (1)

where the Q̂i refer to the chosen multipole operators and λi
are their associated Lagrange multipliers. This method presents
the benefit of controlling the principal components of the shape
of the states through a small set of DoFs. The other DoFs are
determined automatically from the HFB variational principle. It
is often qualified as an adiabatic method because the generator
states will minimize their HFB energy under a small number
of constraints. One drawback of this method is that it does not
necessarily ensure the continuity of the function q →

∣

∣φ(q)
〉

.
This could severely affect some applications as mentioned in
sections 2.6, 3.3.

In the context of nuclear structure, the now-standard strategy
of symmetry breaking and restoration provides a different yet
natural way of building generator states. In this context, we
typically define the generator states as the result of applying a
parameterized group of symmetry operators on a reference (and
symmetry breaking) HFB state |φ〉. Typically, for the particle-
number symmetry, the relevant collective coordinate is the gauge
angle θ [16] and the generator states

∣

∣φ(θ)
〉

read

∣

∣φ(θ)
〉

= exp
(

iθ(Â− A)
)

|φ〉 . (2)

Note that the two strategies mentioned above to create the
generator states are often mixed when dealing with several
collective coordinates [8].

2.2. Griffin-Hill-Wheeler Ansatz
Once the family of generator states is chosen, the Griffin-Hill-
Wheeler (GHW) ansatz assumes that the many-body state of the
system reads at any time

∣

∣$(t)
〉

=
∫

q∈E
dq
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∣φ(q)
〉

f (q, t). (3)

The function f (q, t) gives the complex-valued weights of this
quantum mixture of states. It should belong to the space
of square-integrable functions that we note here L2(E). The
expectation value of any observable Ô for a GHW state has the
compact form

〈Ô〉(t) =
∫∫

dq dq′f %(q, t)O(q, q′)f (q′, t). (4)

We used here the notation O(q, q′) for the kernel of the
observable defined by

O(q, q′) =
〈

φ(q)
∣

∣Ô
∣

∣φ(q′)
〉

. (5)

Significant kernels that we will discuss through this review are
the norm kernel and the energy (or Hamiltonian) kernel. They
are defined as

H(q, q′) =
〈

φ(q)
∣

∣Ĥ
∣

∣φ(q′)
〉

(Hamiltonian), (6)

N (q, q′) =
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∣1̂
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∣φ(q′)
〉

(norm). (7)

We emphasize that the choice of collective coordinates q is
somehow arbitrary. From one choice of collective coordinate, we
may switch to a different one while keeping invariant the space of
GHW states. We can show this by defining a change of variable ϕ

a = ϕ(q). (8)

Then we may consider the GHW ansatz built on the transformed

generator states
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f̃ (a, t). (9)

Any GHW state defined by Equation (3) can be cast into
Equation (9) with the weight function

f̃ (a, t) = f (ϕ−1(a), t)| det(Jϕ(a))|−1. (10)

Here Jϕ is the Jacobian matrix of the coordinate transformation.
Also, the formula for the expectation value observables is
invariant by this change of coordinate. Typically we have in
the a representation

〈Ô〉(t) =
∫∫

da da′ f̃ %(a, t)O(a, a′)f̃ (a′, t), (11)
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Ô
∣

∣

∣
φ̃(a′)

〉

. (12)

Although applying such a change of variable does not change
the physics of the ansatz, it does change intermediate quantities
involved in the GCM framework. In some cases, it may be
essential to change the variables to obtain valuable mathematical
properties of the kernel operators [15, 16].

As a final remark, we would like to highlight that the
integral of Equation (3) may not be well defined for some
weight functions and family of generator states. The [15] gives
a mathematically rigorous presentation of the GCM framework.
We retain from this work that a sufficient condition for the GHW
ansatz to be valid is that norm kernel defines a bounded linear
operator on L2(E).

2.3. Griffin-Hill-Wheeler Equation
The time-dependent Schrödinger equation in the entire many-
body Hilbert space,

(

Ĥ − ih̄
d

dt

)

∣

∣$(t)
〉

= 0, (13)

drives the exact time evolution of amany-body system
∣

∣$(t)
〉

. We
assume here that all the interactions between the nucleons are
encoded into the Hamiltonian Ĥ acting on the full many-body
space. From this starting point, the TDGCM equation of motion
can be obtained by assuming that at any time t:

1. the wave function of the system keeps the form of
Equation (3),
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⇒ represents the nuclear wave function by a superposition of 
generator states that are functions of collective coordinates. 

⇒ a fully quantum mechanical approach but only takes into account collective degrees of freedom in 
the adiabatic approximation. 

⇒ no dissipation mechanism. 

TDGCM in the Gaussian overlap approximation (TDGCM+GOA)

Time-dependent Schroedinger-like equation for fission dynamics (axial quadrupole and octupole deformation 
parameters as collective degrees of freedom): 
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RMF+BCS quadrupole and octupole constrained deformation energy surface of 226Th in the β2 − β3 plane. 

PC-PK1 plus δ-force pairing

→ includes static correlations: 

deformations & pairing


→ does not include dynamic 

(collective) correlations that 

arise from symmetry restoration 

and quantum fluctuations 

around mean-field minima



that the quadrupole minimum is indeed at γ=0°, that is, axial prolate. The microscopic
origin of coexistence of the two minima becomes apparent from the dependence of the single-
nucleon levels on the two deformation parameters. Figure 12 displays the single neutron and
proton levels of 226Th along a path in the β2−β3 plane. Starting from the spherical con-
figuration, the path follows the quadrupole deformation parameter β2 up to the position of the
equilibrium minimum β2=0.2, with the octupole deformation parameter kept constant at
zero value. Then, for the constant value β2=0.2, the path continues from β3=0 to
β3=0.3. The necessary condition for the occurrence of low-energy octupole collectivity is
the presence of pairs of orbitals near the Fermi level that are strongly coupled by the octupole
interaction. In the panels on the left of figure 12 we notice states of opposite parity that
originate from the spherical levels g9/2 and j15/2 for neutrons, and f7/2 and i13/2 for protons.
The total energy can be related to the level density around the Fermi surface, that is, a lower-
than-average density of single-particle levels results in extra binding. Therefore, the local
quadrupole minimum seen on the axial energy surface of 226Th reflects the β2-dependence of
the levels of the Nilsson diagram for β3=0. For the levels in the panels on the right of
figure 12 parity is not conserved, and the only quantum number that characterises these states
is the projection of the angular momentum on the symmetry axis. The octupole minimum,
rather soft along the β3-path in 226Th, is attributed to the low density of both proton and

Figure 12. 226Th single-neutron (upper panel) and single-proton (lower panel) levels in
the canonical basis as functions of the deformation parameters. The path follows the
quadrupole deformation parameter β2 up to the position of the equilibrium minimum
β2=0.2, with the constant octupole deformation β3=0 (left panels). For β2=0.2
the panels on the right display the single-nucleon energies from β3=0 to β3=0.3.
Dashed curves denote the position of the Fermi level at each deformation.
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A triple-humped fission barrier is predicted along 
the static fission path, and the calculated heights 
are 7.10, 8.58, and 7.32 MeV from the inner to the 
outer barrier. 

FIG. 4: (Color online) The calculated total kinetic energy of the nascent fission fragments for
226

Th

as a function of fragment mass, in comparison to the data [53].

TABLE I: The height of the fission barriers (in MeV) with respect to the corresponding ground-

state minima, for di↵erent values of the pairing strengths.

BI Basy
II

Basy
III

Bsym
II

Bsym
III

90% pairing 8.23 9.47 7.74 15.64 6.38

100% pairing 7.10 8.58 7.32 14.21 5.72

110% pairing 5.92 7.78 7.09 12.72 5.17

dynamics, we analyze the characteristics of the fission process for di↵erent strengths of

the pairing interaction. Figure 5 displays the PESs of 226Th for three parametrizations of

pairing force: (Vn, Vp) = (324, 340.2), (360, 378), and (396, 415.8) MeV fm3. These values

correspond to 90%, 100%, and 110%, respectively, of the original pairing strengths that

were determined to reproduce the empirical pairing gaps of 226Th. Even though the general

topography of the PESs does not change significantly as pairing increases, the barriers are

reduced considerably (see Table I). In particular, the ridge between the symmetric and

asymmetric fission valleys is lowered, and this leads to pronounced competition between the

two fission modes (c.f. Fig. 10).

In Fig. 6 we plot the collective masses B�1
22 and B

�1
33 , related to vibrations in �2 and �3,
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The height of the fission barriers (in MeV) with respect 
to the corresponding ground-state minima:



    Induced Fission - Finite Temperature Effects



    Finite temperature effects:

3

The entropy of the nuclear system is calculated using
the relation:

S = �kB
X

k

[fk ln fk + (1� fk) ln(1� fk)] . (14)

The thermodynamical potential relevant to study finite-
temperature deformation e↵ects is the Helmholtz free en-
ergy F = E(T ) � TS, computed at constant volume V
and temperature T [44]. E(T ) is the binding energy of
the deformed nucleus, and the deformation-dependent
energy landscape is obtained in a self-consistent finite-
temperature mean-field calculation with constraints on
the mass multipole moments Q�µ = r�Y�µ. The nuclear
shape is parameterized by the deformation parameters

��µ =
4⇡

3AR�
hQ�µi. (15)

The shape is assumed to be invariant under the exchange
of the x and y axes, and all deformation parameters ��µ

with even µ can be included simultaneously. The self-
consistent RMF+BCS equations are solved by an expan-
sion in the axially deformed harmonic oscillator (ADHO)
basis [54]. In the present study calculations have been
performed in an ADHO basis truncated to Nf = 20 os-
cillator shells. For details of the MDC-RMF model we
refer the reader to Ref. [34].

In the TDGCM+GOA nuclear fission is modeled as
a slow adiabatic process driven by only a few collective
degrees of freedom [18]. The dynamics is described by
a local, time-dependent Schrödinger-like equation in the
space of collective coordinates q,

i~@g(q, t)
@t

= Ĥcoll(q)g(q, t). (16)

The collective Hamiltonian Ĥcoll(q) reads

Ĥcoll(q) = �~2
2

X

ij

@

@qi
Bij(q)

@

@qj
+ V (q), (17)

where V (q) and Bij(q) = M�1(q) are the collective po-
tential and mass tensor, both determined by microscopic

self-consistent mean-field calculations based on universal
energy density functionals. g(q, t) is the complex wave
function of the collective variables q.

The collective space is divided into the inner region
with a single nuclear density distribution, and an external
region that contains the two fission fragments. The set
of scission configurations defines the hyper-surface that
separates the two regions. The flux of the probability
current through this hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time t. Each infinitesimal surface element is associated
with a given pair of fragments (AL, AH), where AL and
AH denote the lighter and heavier fragment, respectively.
The integrated flux F (⇠, t) for a given surface element ⇠
is defined as [16]

F (⇠, t) =

Z
t

t0

Z

⇠

J(q, t) · dS, (18)

where J(q, t) is the current

J(q, t) =
~
2i
B(q)[g⇤(q, t)rg(q, t)� g(q, t)rg⇤(q, t)].

(19)
The yield for the fission fragment with mass A is defined
by

Y (A) /
X

⇠2A
lim
t!1

F (⇠, t). (20)

The set A(⇠) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number A.

The inertia tensor is calculated in the finite-
temperature perturbative cranking approximation [43,
48]:

MCp = ~2M�1
(1)M(3)M

�1
(1) , (21)

with
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1
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The starting point of the dynamical calculation is the
choice of the collective wave packet g(q, t = 0). We build
the initial state as a Gaussian superposition of the quasi-

bound states gk,

g(q, t = 0) =
X

k

exp

✓
(Ek � Ē)2

2�2

◆
gk(q), (23)
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separates the two regions. The flux of the probability
current through this hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time t. Each infinitesimal surface element is associated
with a given pair of fragments (AL, AH), where AL and
AH denote the lighter and heavier fragment, respectively.
The integrated flux F (⇠, t) for a given surface element ⇠
is defined as [16]
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Z
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t0

Z
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J(q, t) · dS, (18)

where J(q, t) is the current

J(q, t) =
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2i
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(19)
The yield for the fission fragment with mass A is defined
by
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t!1
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The set A(⇠) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number A.

The inertia tensor is calculated in the finite-
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The starting point of the dynamical calculation is the
choice of the collective wave packet g(q, t = 0). We build
the initial state as a Gaussian superposition of the quasi-

bound states gk,

g(q, t = 0) =
X

k
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✓
(Ek � Ē)2

2�2

◆
gk(q), (23)
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Gogny functionals [48]. The effect of FT on perturbative
cranking inertia tensors has also been investigated in the
FT-HFB framework [43, 48]. Exploratory studies of FT
effects on induced fission yield distributions using semi-
classical approaches have been reported in Refs. [49–51].
In this work we present the first microscopic investigation
of finite temperature effects on induced fission dynamics
using the TDGCM+GOA collective model. The theo-
retical framework and method are introduced in Sec. II.
The details of the calculation for the illustrative example
of 226Th, the results for deformation energy landscapes,
inertia tensor, as well as the charge and mass yield dis-
tributions are described and discussed in Sec. III. Sec. IV
contains a summary of the principal results.

II. THE METHOD

Assuming that the compound nucleus is in a state of
thermal equilibrium at temperature T , it can be de-
scribed by the finite temperature (FT) Hartree-Fock-
Bogoliubov (HFB) theory [42, 52]. In the grand-
canonical ensemble, the expectation value of any oper-
ator Ô is given by an ensemble average

〈Ô〉 = Tr [D̂Ô], (1)

where D̂ is the density operator:

D̂ =
1

Z
e−β(Ĥ−λN̂) . (2)

Z is the grand partition function, β = 1/kBT with the
Boltzmann constant kB, Ĥ is the Hamiltonian of the sys-
tem, λ denotes the chemical potential, and N̂ is the par-
ticle number operator. In the present study we employ
the relativistic mean-field (RMF) model for the particle-
hole channel, while pairing correlations are treated in the
BCS approximation. The Dirac single-nucleon equation

ĥψk(r) = εkψk(r), (3)

is determined by the Hamiltonian

ĥ = α · p+ β[M + S(r)] + V0(r) + ΣR(r), (4)

where, for the relativistic energy-density functional DD-
PC1 [53], the scalar potential, vector potential, and re-
arrangement terms read

S = αS(ρ)ρS + δS#ρS ,

V0 = αV (ρ)ρV + αTV (ρ)(ρTV · (τ + e
1− τ3

2
A0,

ΣR =
1

2

∂αS

∂ρ
ρ2S +

1

2

∂αV

∂ρ
ρ2V +

1

2

∂αTV

∂ρ
ρ2TV , (5)

respectively. M is the nucleon mass, αS(ρ), αV (ρ),
and αTV (ρ) are density-dependent couplings for differ-
ent space-isospace channels, δS is the coupling constant
of the derivative term, and e is the electric charge. In the

finite-temperature RMF+BCS approximation the single-
nucleon densities ρS (scalar-isoscalar density), ρV (time-
like component of the isoscalar current), and ρTV (time-
like component of the isovector current), are defined by
the following relations:

ρS =
∑

k

ψ̄k(r)ψk(r)[v
2
k(1− fk) + u2

kfk], (6)

ρV =
∑

k

ψ̄k(r)γ
0ψk(r)[v

2
k(1− fk) + u2

kfk], (7)

ρTV =
∑

k

ψ̄k(r)(τγ
0ψk(r)[v

2
k(1− fk) + u2

kfk], (8)

where fk is the thermal occupation probability of a quasi-
particle state

fk =
1

1 + eβEk

, (9)

and β = 1/kBT . Ek = [(εk − λ)2 +∆2
k]

1/2 is the quasi-
particle energy, and λ is the Fermi level. v2k are the BCS
occupation probabilities

v2k =
1

2

(

1−
εk − λ

Ek

)

, (10)

and u2
k = 1− v2k. The gap equation at finite temperature

reads

∆k =
1

2

∑

k′>0

V pp
kk̄k′k̄′

∆k′

Ek′

(1 − 2f ′
k). (11)

In the particle-particle channel we use a separable pairing
force of finite range [54]:

V (r1, r2, r
′
1, r

′
2) = G0 δ(R −R

′)P (r)P (r′)
1

2
(1− P σ) ,

(12)
where R = (r1+r2)/2 and r = r1−r2 denote the center-
of-mass and the relative coordinates, respectively. P (r)
reads

P (r) =
1

(4πa2)3/2
e−r

2/4a2

. (13)

The two parameters of the interaction were originally ad-
justed to reproduce the density dependence of the pair-
ing gap in nuclear matter at the Fermi surface calculated
with the D1S parameterization of the Gogny force [13].
The entropy of the compound nuclear system is com-

puted using the relation:

S = −kB
∑

k

[fk ln fk + (1 − fk) ln(1 − fk)] . (14)

The thermodynamical potential relevant for an analysis
of finite-temperature deformation effects is the Helmholtz
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cranking inertia tensors has also been investigated in the
FT-HFB framework [43, 48]. Exploratory studies of FT
effects on induced fission yield distributions using semi-
classical approaches have been reported in Refs. [49–51].
In this work we present the first microscopic investigation
of finite temperature effects on induced fission dynamics
using the TDGCM+GOA collective model. The theo-
retical framework and method are introduced in Sec. II.
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Z is the grand partition function, β = 1/kBT with the
Boltzmann constant kB, Ĥ is the Hamiltonian of the sys-
tem, λ denotes the chemical potential, and N̂ is the par-
ticle number operator. In the present study we employ
the relativistic mean-field (RMF) model for the particle-
hole channel, while pairing correlations are treated in the
BCS approximation. The Dirac single-nucleon equation

ĥψk(r) = εkψk(r), (3)

is determined by the Hamiltonian

ĥ = α · p+ β[M + S(r)] + V0(r) + ΣR(r), (4)

where, for the relativistic energy-density functional DD-
PC1 [53], the scalar potential, vector potential, and re-
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and αTV (ρ) are density-dependent couplings for differ-
ent space-isospace channels, δS is the coupling constant
of the derivative term, and e is the electric charge. In the

finite-temperature RMF+BCS approximation the single-
nucleon densities ρS (scalar-isoscalar density), ρV (time-
like component of the isoscalar current), and ρTV (time-
like component of the isovector current), are defined by
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1/2 is the quasi-
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The two parameters of the interaction were originally ad-
justed to reproduce the density dependence of the pair-
ing gap in nuclear matter at the Fermi surface calculated
with the D1S parameterization of the Gogny force [13].
The entropy of the compound nuclear system is com-

puted using the relation:
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∑
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dynamics of the final stage of the fission process, from
configurations close to the outer fission barrier to full
scission.

The influence of ground-state (static) pairing correla-
tions on charge yields and total kinetic energy of fission
fragments for the case of induced fission of 226Th iso-
tope was analyzed in Ref. [17] using the TDGCM+GOA
framework. It has been shown that an increase of the
strength of the pairing interaction, beyond the range de-
termined by empirical pairing gaps obtained from the
experimental masses of neighboring nuclei, reduces the
asymmetric peaks and enhances the symmetric peak in
charge yields distribution. This is a very interesting re-
sult, and thus it is important to explore dynamical pair-
ing correlations in induced fission. In this work we ex-
plicitly include the isoscalar pairing degree of freedom in
the space of TDGCM+GOA collective coordinates, and
perform the first realistic three-dimensional calculation
of induced fission of 228Th. The theoretical framework
and methods are reviewed in Sec. II. The details of the
calculation and principal results are discussed in Sec. III.
Section IV contains a short summary and outlook for
future studies.

II. THE TDGCM+GOA METHOD

In the TDGCM+GOA framework induced fission is
described as a slow adiabatic process determined by a
small number of collective degrees of freedom. The ini-
tial step in modeling the fission of a heavy nucleus is
a self-consistent mean-field (SCMF) calculation of the
corresponding deformation energy surface as a function
of few selected collective coordinates. Such a calcula-
tion provides the microscopic input, that is, the single-
quasiparticle states, energies, and occupation factors,
that determine the parameters of a local equation of mo-
tion for the collective wave function.

The theoretical framework and specific model have
been detailed in our previous studies [17–20]. For com-
pleteness, here we include a short outline and discuss
in more detail the specific points that arise when con-
sidering pairing as a collective degree of freedom. The
relativistic energy density functional DD-PC1 [32] is em-
ployed in the particle-hole channel, while pairing corre-
lations are taken into account in the Bardeen-Cooper-
Schrie↵er (BCS) approximation by a separable pairing
force of finite range [33]. The parameters of the pairing
interaction have been adjusted to reproduce the empir-
ical pairing gaps in the mass region considered in the
present study [19].

The self-consistent deformation energy surfaces are cal-
culated using the multidimensionally constrained rela-
tivistic mean-field (MDC-RMF) model [16, 21, 34, 35]
with constraints on mass multipole moments Q�µ =
r
�
Y�µ, and the particle-number dispersion operator

�N̂
2 = N̂

2�hN̂i2. The Routhian is therefore defined as

E
0 = ERMF +

X

�µ

1

2
C�µQ�µ + �2�N̂

2
, (1)

where ERMF denotes the total RMF energy that includes
static BCS pairing correlations. The amount of dynamic
pairing correlations can be controlled by the Lagrange
multipliers �2⌧ (⌧ = n, p), [16, 25, 36, 37]. To reduce
the number of collective degrees of freedom and, there-
fore, the considerable computational task, here we only
consider isoscalar dynamical pairing; �2n = �2p ⌘ �2 is
employed as the collective coordinate.
The dynamics of the fission process is governed by a

local, time-dependent Schrödinger-like equation in the
space of collective coordinates q. The collective Hamil-
tonian Ĥcoll(q)

Ĥcoll(q) = �~2
2

X

ij

@

@qi
Bij(q)

@

@qj
+ V (q), (2)

determines the time-evolution of the nuclear wave func-
tion from an initial state at equilibrium deformation,
up to scission and the formation of fission fragments.
Bij(q) and V (q) denote the inertia tensor and collec-
tive potential, respectively, that are computed using the
self-consistent solutions for the RMF+BCS deformation
energy surface. Here we assume axial symmetry with
respect to the axis along which the two fragments even-
tually separate, and consider the three-dimensional (3D)
collective space of quadrupole �2 and octupole �3 defor-
mation parameters, and the dynamical pairing coordi-
nate �2. The inertia tensor is the inverse of the mass
tensor, that is, Bij(q) = (M�1)ij(q). The mass tensor
is calculated using the adiabatic time-dependent Hartree-
Fock-Bogoliubov (ATDHFB) method in the cranking ap-
proximation [39]:

MC
ij =

~2
2q̇iq̇j

X

µ⌫

F
i⇤
µ⌫F

j
µ⌫ + F

i
µ⌫F

j⇤
µ⌫

Eµ + E⌫
, (3)

where

F
i
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V

⇤ + U
† @
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† @⇢
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⇤ � V
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⇤

@qi
V

⇤
.

(4)
U and V are the self-consistent Bogoliubov matrices,
and ⇢ and  are the corresponding particle and pairing
density matrices, respectively. The cranking expression
Eq. (3) can be further simplified in the perturbative ap-
proach [41–45], and this leads to the perturbative crank-
ing mass tensor:

MCp = ~2M�1
(1)M(3)M

�1
(1) , (5)

where

⇥
M(k)

⇤
ij
=

X

µ⌫

D
0
���Q̂i

���µ⌫
ED

µ⌫

���Q̂j

��� 0
E

(Eµ + E⌫)k
. (6)

2

dynamics of the final stage of the fission process, from
configurations close to the outer fission barrier to full
scission.

The influence of ground-state (static) pairing correla-
tions on charge yields and total kinetic energy of fission
fragments for the case of induced fission of 226Th iso-
tope was analyzed in Ref. [17] using the TDGCM+GOA
framework. It has been shown that an increase of the
strength of the pairing interaction, beyond the range de-
termined by empirical pairing gaps obtained from the
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asymmetric peaks and enhances the symmetric peak in
charge yields distribution. This is a very interesting re-
sult, and thus it is important to explore dynamical pair-
ing correlations in induced fission. In this work we ex-
plicitly include the isoscalar pairing degree of freedom in
the space of TDGCM+GOA collective coordinates, and
perform the first realistic three-dimensional calculation
of induced fission of 228Th. The theoretical framework
and methods are reviewed in Sec. II. The details of the
calculation and principal results are discussed in Sec. III.
Section IV contains a short summary and outlook for
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In the TDGCM+GOA framework induced fission is
described as a slow adiabatic process determined by a
small number of collective degrees of freedom. The ini-
tial step in modeling the fission of a heavy nucleus is
a self-consistent mean-field (SCMF) calculation of the
corresponding deformation energy surface as a function
of few selected collective coordinates. Such a calcula-
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that determine the parameters of a local equation of mo-
tion for the collective wave function.

The theoretical framework and specific model have
been detailed in our previous studies [17–20]. For com-
pleteness, here we include a short outline and discuss
in more detail the specific points that arise when con-
sidering pairing as a collective degree of freedom. The
relativistic energy density functional DD-PC1 [32] is em-
ployed in the particle-hole channel, while pairing corre-
lations are taken into account in the Bardeen-Cooper-
Schrie↵er (BCS) approximation by a separable pairing
force of finite range [33]. The parameters of the pairing
interaction have been adjusted to reproduce the empir-
ical pairing gaps in the mass region considered in the
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tonian Ĥcoll(q)
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tope was analyzed in Ref. [17] using the TDGCM+GOA
framework. It has been shown that an increase of the
strength of the pairing interaction, beyond the range de-
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experimental masses of neighboring nuclei, reduces the
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perform the first realistic three-dimensional calculation
of induced fission of 228Th. The theoretical framework
and methods are reviewed in Sec. II. The details of the
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consider isoscalar dynamical pairing; �2n = �2p ⌘ �2 is
employed as the collective coordinate.
The dynamics of the fission process is governed by a

local, time-dependent Schrödinger-like equation in the
space of collective coordinates q. The collective Hamil-
tonian Ĥcoll(q)
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determines the time-evolution of the nuclear wave func-
tion from an initial state at equilibrium deformation,
up to scission and the formation of fission fragments.
Bij(q) and V (q) denote the inertia tensor and collec-
tive potential, respectively, that are computed using the
self-consistent solutions for the RMF+BCS deformation
energy surface. Here we assume axial symmetry with
respect to the axis along which the two fragments even-
tually separate, and consider the three-dimensional (3D)
collective space of quadrupole �2 and octupole �3 defor-
mation parameters, and the dynamical pairing coordi-
nate �2. The inertia tensor is the inverse of the mass
tensor, that is, Bij(q) = (M�1)ij(q). The mass tensor
is calculated using the adiabatic time-dependent Hartree-
Fock-Bogoliubov (ATDHFB) method in the cranking ap-
proximation [39]:
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U and V are the self-consistent Bogoliubov matrices,
and ⇢ and  are the corresponding particle and pairing
density matrices, respectively. The cranking expression
Eq. (3) can be further simplified in the perturbative ap-
proach [41–45], and this leads to the perturbative crank-
ing mass tensor:
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(1)M(3)M
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(1) , (5)
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q≡{β2,β3,λ2}

Charge yields calculated in the 3D collective space 
→ deformation β2, β3 and dynamical pairing λ2 
coordinates. 

Effect of dynamical pairing on the flux of the probability current 
through the scission hyper-surface:
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FIG. 3. (Color online) Perturbative cranking masses MCp
11 ,

MCp
22 , and the non-perturbative cranking mass MC

33 (in ~2
MeV

�1
) (logarithmic scale) along the static fission path for

several values of �2.

FIG. 4. (Color online) The scission controur of
228

Th in the

(�2,�3) deformation plane for several values of the collective

pairing coordinate�2 .

empirical ground-state pairing gaps in this mass region
(100%), predicts yields that are entirely dominated by
asymmetric fission with peaks at Z = 35 and Z = 55. By
increasing static pairing (110%), the asymmetric peaks
are reduced and a contribution of symmetric fission de-
velops, but not strong enough to reproduce the data. It
is interesting to notice that a very similar distribution of
charge yields is predicted by the 3D model calculation

FIG. 5. (Color online) Charge yields for induced fission of
228

Th, calculated in the 3D collective space built from the de-

formation �2, �3 and dynamical pairing �2 coordinates (solid

red curve). The yields are shown in comparison to the re-

sults obtained in the 2D space of shape degrees of freedom

�2 and �3, with static pairing correlations adjusted to empir-

ical ground-state pairing gaps (100% pairing strength), and

enhanced by ten percent (110% pairing strength). The data

for photo-induced fission correspond to photon energies in the

interval 8-14 MeV, and peak value of E� = 11 MeV [47].

that includes dynamical pairing. On a quantitative level,
even the 3D calculation does not completely reproduce
the experimental yields. The model predicts tails of the
asymmetric peaks that are not seen in experiment, and
thus fails to quantitatively match the symmetric contri-
bution. It has to be noted, however, that in the present
study the collective potential and inertia tensor have
been calculated at zero temperature. In our recent study
of finite temperature e↵ects in TDGCM+GOA [18], a
calculation of induced fission of 226Th has shown that,
although the model can qualitatively reproduce the em-
pirical triple-humped structure of the fission charge and
mass distributions already at zero temperature, the po-
sition of the asymmetric peaks and the symmetric-fission
yield can be described much better when the potential
and collective mass are determined at a temperature that
approximately corresponds to the internal excitation en-
ergy of the fissioning nucleus.
Finally, to illustrate the e↵ect of dynamical pairing on

the flux of the probability current through the scission
hyper-surface, in Fig. 7 we plot the time-integrated flux
through the scission contour in the (�2,�3) plane, for a
given value of the pairing collective coordinate �2

B(�2) /
X

⇠2B
lim
t!1

F (⇠,�2, t). (10)

The set B(⇠ ⌘ �2,�3) contains all elements of the scission
contour with a given value �2. Even though it appears
that dynamical pairing does not significantly modify the

→ time-integrated flux through the scission contour in the (β2, β3) 
plane, for a given value of the pairing collective coordinate λ2 .

static BCS

λ2 = 0.
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Time-dependent density functional theory (TDDFT) 4

determined by the time-dependent Dirac equation
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where the single-particle energy "k(t) = h k|ĥ| ki, and the single-particle Hamiltonian ĥ(r, t) reads

ĥ(r, t) = ↵ · (p̂� V ) + V
0 + �(mN + S). (14)

The scalar S(r, t) and four-vector V (r, t) potentials are consistently determined at each step in time by the time-
dependent densities and currents in the isoscalar-scalar, isoscalar-vector and isovector-vector channels,
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respectively. ⌧3 is the isospin Pauli matrix with eigenvalues +1 for neutrons, and �1 for protons (see details in
Ref. [20]). The time evolution of the occupation probability nk(t) = |vk(t)|2, and pairing tensor k(t) = u

⇤
k
(t)vk(t), is

governed by the following equations
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In time-dependent calculations, a monopole pairing interaction is employed, and the gap parameter�k(t) is determined
by the single-particle energy and the pairing tensor,

�k(t) =

"
G

X

k0>0

f("k0)k0

#
f("k), (17)

where f("k) is the cut-o↵ function for the pairing window.
In the calculations with time-dependent covariant DFT, the mesh spacing of the lattice is 1.0 fm for all directions,

and the box size is taken as Lx ⇥ Ly ⇥ Lz = 20 ⇥ 20 ⇥ 60 fm3. The time-dependent Dirac equation (13) is solved
with the predictor-corrector method, and the time-dependent equations (16) using the Euler algorithm. The step
for the time evolution is 6.67 ⇥ 10�4 zs. The density functional, pairing strength parameters G, and the cut-o↵
function f("k) for the pairing window are taken the same as in the calculation with TDGCM. The initial states
for the time evolution are obtained by self-consistent deformation-constrained relativistic DFT calculations in three-
dimensional lattice space based on the inverse Hamiltonian and Fourier spectral methods [23–25], with the box size:
Lx ⇥ Ly ⇥ Lz = 20⇥ 20⇥ 50 fm3.

B. Fission trajectories

In Fig. 1 we plot the TD(C)DFT fission trajectories from the initial points (denoted by open dots ) on the self-
consistent deformation energy surface of 240Pu. The initial points for the time evolution correspond to the iso-energy
contours at �1 MeV (upper panel) and �4 MeV (lower panel), below the energy of the equilibrium minimum. Only
those trajectories that end up in scission of the fissioning nucleus are shown. Trajectories that start from very
asymmetric shapes (large �30 values in the upper panel), or from almost symmetric shapes (small �30 values in both
panels), do not lead to scission but get trapped in local minima. Most trajectories simply follow the path of steepest
descent, especially in the lower panel where the initial points are closer to scission. In this case, scission is obtained
also for very asymmetric shapes. The disconnected region without open dots in the lower panel correspond to points
on the deformation energy surface that, in the TDGCM calculation, are located beyond the scission contour defined
by the number of particles in the neck.
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where f("k) is the cut-o↵ function for the pairing window.
In the calculations with time-dependent covariant DFT, the mesh spacing of the lattice is 1.0 fm for all directions,

and the box size is taken as Lx ⇥ Ly ⇥ Lz = 20 ⇥ 20 ⇥ 60 fm3. The time-dependent Dirac equation (13) is solved
with the predictor-corrector method, and the time-dependent equations (16) using the Euler algorithm. The step
for the time evolution is 6.67 ⇥ 10�4 zs. The density functional, pairing strength parameters G, and the cut-o↵
function f("k) for the pairing window are taken the same as in the calculation with TDGCM. The initial states
for the time evolution are obtained by self-consistent deformation-constrained relativistic DFT calculations in three-
dimensional lattice space based on the inverse Hamiltonian and Fourier spectral methods [23–25], with the box size:
Lx ⇥ Ly ⇥ Lz = 20⇥ 20⇥ 50 fm3.

B. Fission trajectories

In Fig. 1 we plot the TD(C)DFT fission trajectories from the initial points (denoted by open dots ) on the self-
consistent deformation energy surface of 240Pu. The initial points for the time evolution correspond to the iso-energy
contours at �1 MeV (upper panel) and �4 MeV (lower panel), below the energy of the equilibrium minimum. Only
those trajectories that end up in scission of the fissioning nucleus are shown. Trajectories that start from very
asymmetric shapes (large �30 values in the upper panel), or from almost symmetric shapes (small �30 values in both
panels), do not lead to scission but get trapped in local minima. Most trajectories simply follow the path of steepest
descent, especially in the lower panel where the initial points are closer to scission. In this case, scission is obtained
also for very asymmetric shapes. The disconnected region without open dots in the lower panel correspond to points
on the deformation energy surface that, in the TDGCM calculation, are located beyond the scission contour defined
by the number of particles in the neck.

⇒ classical evolution of independent nucleons 
in mean-field potentials, cannot be applied in 
classically forbidden regions of the collective 
space, nor does it take into account quantum 
fluctuations. 

⇒ automatically includes the one-body dissipation mechanism, but can only simulate a single fission event 
by propagating the nucleons independently. 



Negele et al. (1978) ➠ use an adiabatic model for the time interval in which the fissioning nucleus evolves from 
the quasi-stationary initial state to the saddle point, and a non-adiabatic method for the saddle-to-scission and 
beyond-scission dynamics. 
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Total kinetic energies (TKEs) of the fragments
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FIG. 5. Same as in the caption to Fig. 4 but for the initial
iso-energy curve 4 MeV bellow the energy of the equilibrium
minimum.

mined before the final stage of the fission process in which
the dissipation mechanism becomes important [44]. The
TD(C)DFT reproduces the peaks of the experimental
charge yields but not the width. Only when the set of ini-
tial points on the deformation energy surface is located
much closer to the fission valley, the calculated fission
yields exhibit a structure that qualitatively resembles the
empirical charge yields. This emphasizes the importance
of quantum fluctuations that are included in the TDGCM
evolution of the collective nuclear function, but not in the
TD(C)DFT trajectories that correspond to the propaga-
tion of individual nucleons in mean-field potentials.

FIG. 6. The calculated total kinetic energies of the nascent
fragments for induced fission of 240Pu, as functions of the
fragment charge. The TDGCM and TD(C)DFT results are
shown in comparison to the data [45].

A di↵erent result is obtained for the total kinetic en-
ergy (TKE) of the fragments. In Fig. 6 we show the
TKEs of the nascent fission fragments for 240Pu, as func-
tions of the fragment charge. The theoretical values are
compared to data [45]. In the TDGCM, the total kinetic
energy for a particular pair of fragments can be evaluated

from

ETKE =
e
2
ZHZL

dch
, (19)

where e is the proton charge, ZH(ZL) the charge of the
heavy (light) fragment, and dch is the distance between
centers of charge at the point of scission. For TD(C)DFT,
the TKE at a finite distance between the fission frag-
ments (⇡ 25 fm, at which shape relaxation brings the
fragments to their equilibrium shapes) is calculated us-
ing the expression [15]

ETKE =
1

2
mAHv

2

H
+

1

2
mALv

2

L
+ ECoul, (20)

where the velocity of the fragment f = H,L reads

~vf =
1

mAf

Z

Vf

dr j(r), (21)

and j(r) is the total current density. The integration is
over the half-volume corresponding to the fragment f ,
and ECoul is the Coulomb energy.
TDGCM by definition describes non-dissipative dy-

namics and, in the adiabatic approximation, all the po-
tential energy is converted into collective kinetic energy
during the saddle-to-scission evolution. The nascent frag-
ments are cold, and the calculated TKEs are systemati-
cally too large. On the other hand, one-body dissipation
is automatically included in TD(C)DFT and, in the short
time interval it takes from the initial point to scission, the
collective flow energy is converted into intrinsic degrees
of freedom and the nucleus heats up [15]. This results in
a lower TKE, as show in Fig. 6. In addition, because of
shape relaxation after scission, the deformation energy of
the fragments is also converted into internal heat. It is
interesting to note that the calculated TKEs essentially
do not depend on whether we chose the initial points at
1 MeV or 4 MeV below the energy of the equilibrium
minimum.
It appears that TD(C)DFT slightly underestimates the

TKE for the fragments close to the peaks of the charge
yields distribution but predicts TKEs considerably be-
low the experimental values for the tails of the distri-
bution. Similar results for the TKE of 240Pu fragments
were also obtained in the TDDFT study of Ref. [14]. We
note that the values calculated using Eq. (20) present a
lower bound for the total kinetic energy, due to the fact
that this expression does not include the contribution of
pre-scission energy. Namely, while for the TDGCM the
average energy of the initial wave packet E

⇤
coll

is chosen
1 MeV above the fission barrier (⇡ 8 MeV for 240Pu),
all the initial points for the TDDFT calculation are on
the deformation energy surface, 1 or 4 MeV below the
energy of the equilibrium minimum. Thus, the starting
points for TDDFT trajectories are more than 10 MeV
below the ‘physical’ value. However, one cannot simply
add this di↵erence to the TKE, because part of the pre-
scission energy will be converted into excitation energy of
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during the saddle-to-scission evolution. The nascent frag-
ments are cold, and the calculated TKEs are systemati-
cally too large. On the other hand, one-body dissipation
is automatically included in TD(C)DFT and, in the short
time interval it takes from the initial point to scission, the
collective flow energy is converted into intrinsic degrees
of freedom and the nucleus heats up [15]. This results in
a lower TKE, as show in Fig. 6. In addition, because of
shape relaxation after scission, the deformation energy of
the fragments is also converted into internal heat. It is
interesting to note that the calculated TKEs essentially
do not depend on whether we chose the initial points at
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yields distribution but predicts TKEs considerably be-
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note that the values calculated using Eq. (20) present a
lower bound for the total kinetic energy, due to the fact
that this expression does not include the contribution of
pre-scission energy. Namely, while for the TDGCM the
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1 MeV above the fission barrier (⇡ 8 MeV for 240Pu),
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→ distance between centers of charge at the point of scission. 

(≈ 25 fm, at which shape relaxation brings the fragments to their equilibrium shapes) 
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TDDFT fission trajectories Density profiles at times immediately 
prior to the scission event.



Nucleon localization functions:

2

scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:

Cq�(~r) =

2

41 +
 
⌧q�⇢q� � 1

4 |~r⇢q�|2 �~j2q�
⇢q�⌧TF

q�

!2
3

5
�1

, (1)

for the spin � (" or #) and isospin q (n or p) quantum
numbers. ⇢q�, ⌧q�, ~jq�, and ~r⇢q� denote the nucleon
density, kinetic energy density, current density, and den-

sity gradient, respectively. ⌧TF
q� = 3

5 (6⇡
2)2/3⇢5/3q� is the

Thomas-Fermi kinetic energy density.
For homogeneous nuclear matter ⌧ = ⌧TF

q� , the second
and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total

p
CpCn

(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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for the spin � (" or #) and isospin q (n or p) quantum
numbers. ⇢q�, ⌧q�, ~jq�, and ~r⇢q� denote the nucleon
density, kinetic energy density, current density, and den-

sity gradient, respectively. ⌧TF
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Thomas-Fermi kinetic energy density.
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q� , the second
and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total

p
CpCn

(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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for the spin � (" or #) and isospin q (n or p) quantum
numbers. ⇢q�, ⌧q�, ~jq�, and ~r⇢q� denote the nucleon
density, kinetic energy density, current density, and den-

sity gradient, respectively. ⌧TF
q� = 3
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Thomas-Fermi kinetic energy density.
For homogeneous nuclear matter ⌧ = ⌧TF

q� , the second
and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total

p
CpCn

(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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for the spin � (" or #) and isospin q (n or p) quantum
numbers. ⇢q�, ⌧q�, ~jq�, and ~r⇢q� denote the nucleon
density, kinetic energy density, current density, and den-

sity gradient, respectively. ⌧TF
q� = 3

5 (6⇡
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Thomas-Fermi kinetic energy density.
For homogeneous nuclear matter ⌧ = ⌧TF

q� , the second
and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total

p
CpCn

(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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for the spin � (" or #) and isospin q (n or p) quantum
numbers. ⇢q�, ⌧q�, ~jq�, and ~r⇢q� denote the nucleon
density, kinetic energy density, current density, and den-
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q� , the second
and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total
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(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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for the spin � (" or #) and isospin q (n or p) quantum
numbers. ⇢q�, ⌧q�, ~jq�, and ~r⇢q� denote the nucleon
density, kinetic energy density, current density, and den-
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Thomas-Fermi kinetic energy density.
For homogeneous nuclear matter ⌧ = ⌧TF

q� , the second
and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total

p
CpCn

(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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When are these light clusters formed? 

What is their structure? 

What is their role in the scission mechanism? 
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✔ …accurate microscopic description of universal collective phenomena (fission) 
that reflect the organisation of nucleonic matter in finite nuclei.

Methods (TDGCM, TDDFT) based on the framework of universal  
Energy Density Functionals

• Finite temperature effects


• Energy dissipation and TKE of fragments


• Neck formation and scission mechanism


• Ternary fission


• Fragment angular momentum generation


• Symmetry restoration 
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