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The Nuclear
Mean Field



N-N Potential V(r)/(MeV)

Introduction

The basic assumption of the nuclear mean field is, to first order, the independent
motion of each nucleon (proton or neutron) in an average nuclear potential.
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-how to describe the average field
starting from the NN force between
free nucleons?

3
Radius r/(fm)

-the many-body A-nucleon problem?




Evidence for nuclear shell-structure:

Iron-56 is the most abundant

s_ and the third most stable isotope. Enhanced abundances of elements for
e . . .
10 sl ot hava £ or I Soua which Z or N is a magic number.
to a magic number!
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Electric quadrupole moments are
= zero for magic number nuclei.

The binding energy of the last neutron
relative to the Weizsacker formula.
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Even A isotopes of lead

Excitation energies of first excited states.



One-Particle Excitations
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.. model Hamiltonian for A independent nucleons:

A A
Hy =) (Ti +Ui(r)) = ) _ ho(i)
> eigenfunctions: Viias....an (77,79, . .. H Oa, (
1=1
A
eigenvalues: Ey = Z €a,
1=1

... antisymmetrization:

\Ila,l,(zg(',_).l'.fé) 9 [(r)al (f)(l)(IZ) (bul( )0(1)( )]

\/

The average potential U(r) is not given explicitly. If one starts from a one- plus two-body

Hamiltonian:
1 A
H=) Ti+; ) Vi

i=1 i,j=1



A A
H = Z (T; + Ui(r;)] Z Vij— ZU i) | = Zho(’i) + HREs
: i—1

=1 zg 1

The smaller the effect of Hggs, the better the assumption of an average, independent field
for each nucleon.

€ radial equation ana tne singie-particie spectrum

... start from a central, one-body potential => the total wave function:

~u(r)

5(7) = R)Y(0,6) = “ ¥ (0,0)
... radial equation: K2 d2u(’r) ﬁzl(l + 1)

2m  dr? i [ 2mr? i U(’)] u(r) ulr)
Boundary conditions for bound states (E<0):  w(r) lim = () u(0) =0

o0 o0
... hormalization: / R2(7’)7’2(I7‘ — / '1_1.2(7‘)(17‘ _
0 0



.. solutions for the HO potential: U(r) = %mwz.,,z

. —ur fUl41/2,, 2
up(r) = Ny ' e ™" L, l/)(21/7‘)) (v = mw/2h)

Laguerre polynomials

E = hw(2k + 1+ 5) = hw(N + 5)
N=0,1,2.. major oscillator quantum number
|=N,N-2,..,10r0 orbital quantum number
k=(N-1) /2 radial quantum number

n = k+1 = (N-142)/2 number of nodes of the radial wave function in the interval [0,°°).

Degeneracy: -for a state with orbital angular mometum I: (2/+1)
N
... degeneracy of the oscillator shell N: Dy = 2 Z (2[ -+ 1) — (z\" 1 1)(N +2)
— [=0orl

spin projections



The total number of states in N,,,, oscillator shells:

N 'mazx

Dmax — Z D \ max + 1)(*'?\’17771(1,;7: T 2)(Arm.aa: + 3)
N=0
Nmaz =0,1,2,... = Dnax = 2,8,20,40,70,112, 168, . ..

For a given nucleus the HO frequency can be related to the nucleon number A. From the
virial theorem => expectation value of the HO potential energy in the oscillator state hwN:

1 2.2 1 3
<§I7l.w I )j\ 2(\ -+ = )hw
For a nucleus with N =7 = A/2:
N Novax
nraxr 2 mMax :% h
E Dy(rP)y =5 Y (N+1)(N+2)(N+5)—
bt URE A .\.v_()( DV +2)(V + Q)mw

... average over all occupied proton and neutron HO states.
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1 - Mayer (1949,1950) and Haxel, Jensen, Suess (1949,
= 112 1950) — the average single-nucleon potential should
Ssi2diig. oy % contain a spin-orbit term:
1h 92 .
P 1 h=ho+{(r)l-5
2p 1f 40
L 58 .
... an intrinsically relativistic effect. It is automatically
2s 1d - ff 40 - included in the effective potential when the single —
34 nucleon dynamics is described by the Dirac equation.
When the nucleons are described as non-relativistic
1 : 12; 20 . particles, the spin-orbit term must be added to the
\—-_ Schrédinger equation.
1p e
. ... the single-nucleon wave function:
woma b
/ Up (T
/ < 7,0 |nljm >= ni() Yi(6,¢) @ x1/2] ;
“armonic oscillator Reasonable nuclear T L

v - the spin-orbit term is diagonal in this basis.



~(0)
nl_)

E'll] +Al‘”ll}

0) — (nljm|hg|nljm) doesnot depend on the spin quantum number.

“nlj —
From f g = 1(72 _ Z'2 L ;*2)
2
. oy 3
Aenij = (nljm|(l- § [nljm) = > |10+ 1) =i +1) =
D = /Unl » (17 < () depends on the radial form of the potential.
A much used form for {(r) is the derivative of the average potential: Vi 21 oU (r )
C(T) ls'r()
r  or
Spin-orbit splitting:
/ T ] — l — 1/2
A = (0) 2 D (141
Enlj=l+1/2 = §l €nl/ ,// -5 (+1)
D it o
A“’::n.lj:l—l/Q — _5(1 -+ 1) AN | > l
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mpirical eviadence t1or palring correiations

For even-even nuclei the ground-state has always zero angular momentum, i.e. the residual
interaction lowers this particular state with respect to other ang. momentum
combinations.

Odd-even effect: even-even nuclei are In even-even nuclei there is an energy gap
bound more tightly than neighboring of 1-2 MeV between the ground state and
odd-A nuclei. the lowest singe-particle excitations.
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Possible Analogy between the Excitation Spectra of Nuclei and Those
of the Superconducting Metallic State

A. Bonr, B. R. MorTeLsON, AND D. PiNes*
Institute for Theoretical Physics, University of Copenhagen, Copenhagen, Denmark, and Nordisk Institut for Teoretisk Atomfysik,
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Pairing force between nucleons — in addition to the average shell-model
potential there also acts a relatively short-range residual NN force.



Two nucleons in the same shell:

1 :
nli1:.J =0M = 0) = < imi—m|00 > |im)li —m) = ——— Y™ s\ — m
nljj; )= <jmj—m| lJm)|j —m) VIES > (=) im)lj — m)

m m

This state will have the lowest energy for a short-range interaction. In the state J=0 the
nucleons are relatively close (the spatial overlap of the two nucleon densities is maximal),
whereas they are not in higher angular momentum states.

For nuclei between closed shells, the nucleons (except the last one) will be paired off . This
configuration will be most favorable energetically. To excite even-even nuclei, either a pair
has to be lifted to a higher shell or it has to be broken. For odd nuclei, the odd unpaired
nucleon can simply be lifted to higher orbits.



Pairing in a degenerate single-j shell

1 |
... general two-body interaction: V(1,2) — I Z (aB|V

o, f3,7.0

U
10) g a5 a5an

/

PAIRING HAMILTONIAN:

B y T+ 4+ _ _ 2j4+m+m’
Hp = —( E (.lj,m(-lj_.m(-l'j—-m.'a'jm'(_)

m.m’ >0

a) Two particles in a single-j shell ~ 2({) = 25 + 1 degenerate states.

. \7 27+ 1
The number of states occupied by 2 nucleons: [N = ‘ o
9 1
Number of states of the form |m —m>: () = 2) +1
2
9 97531 1 3 5 7 9
Example: j = — M= —, —. — — =

¢ PR R R R B 0 0! 0! > R
2 2 2 2 2 2



In matrix representation the pairing Hamiltonian reads:

0
11 1 0 0 0
1 1 1 0 0 0
Hp=-G| 1 1 ... 1 0 0 ... 0
o 0O ... 0 0 0 ... 0
0 0 ... 0 0 0 ... 0

with the two-nucleon basis arranged so that the first Q states are those of the form |m —m >.

(1)
1 closed shell
[Yo) = — 1 Z J+'" J+m j |0) is the lowest energy
\/S_l 0 >0 eigenstate of Hp with
Eo = - GQ
\ 0/



Since the eigenvalue of this state is equal to the trace of the matrix H;, all other eigenstates
of Hp which are orthogonal to | o> must be degenerate with eigenvalue zero. This is because
the sum of all eigenvalues equals the trace of the Hamiltonian matrix and because this
particular matrix Hp is negative definite.

2 valence neutrons in 2g9/2.
| o> is shifted downward in energy by —GQ.
All other states with J#0 are not affected. B oopont Ne

6+ ——F——119549 NS
44 ——F——1097.7 0.6 NS
J#0
24 —F—799.7 17 PS
0+ —E——0.022.20Y P-:100% e : 1.9E-6 % 4

210
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b) n — particles in a single-j shell

8+ ey
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¥

F
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a2Mogg

—2760.5 190 NS

2612.31.53 NS

2519.6 = 3.

2282.6 = 3.

4 PS

4 PS

1509.50.35 PS

0.0 STABLE

Filling the 1g9/2 orbital.

Band 1
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0.051.8 M

Band 1

B+) —
6+) —

@+) —
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f——0.0122S €:100%

96
a6"4sg

Band 1

B+) —

6+)—

@+) —

2+) —

—2427.5 0.48 pS
——2280.2

——2082.3

——1394.7

0+ —

L ——09.25 €:100

98
28Cdsg



n-particles in non-degenerate shells: BCS

2%, excitation energies in Sn isotopes:

... between 2 and 30 nucleons (1 to 15 pairs) are distributed over the available five
neutron orbitals 2d5/2, 1g7/2, 1h11/2, 3s1/2, 2d3/2.



.. consider a general trial wave function: 10) = H(uu +va;) al)|0)

/ v>0

BCS ground state. Not
an eigenstate of the
number operator.

.. normalization: <6|()> - H (‘U?, T 1,2,)
>0

.. particle number: (() n ()) - Z 2'1_;3
>0

. particle number uncertainty:  An? = (0[72]0) — (0

7|0)2

3

closed shell

IZU

>0

The uncertainty in the particle number arises from those single-particle states that are

fractionally occupied, i.e. "u,?, £0,1 -‘(_.’;2/ #+ 0,1



The coefficients u, and v, are determined from a constrained variational calculation:
5(0|H|0) =0

H=H—\n= Z(e,, —N(ata, +atay) -G Z af;aj-;a,;a,,

v=>0 >0

The Lagrange multiplier is chosen such that the average particle number equals the actual
number of valence particles:

(0|7]0) = n

P

- )
(O/H|0) = 0 = A = — (0| H|0)
an

From: (_)
an
The BCS transformation from particle creation and annihilation operators to “quasiparticle”
operators:

+ , , —
c, = u,,a,;,L — UpQy aj = u,,c,‘f + VuCi
C, = UpQy — ’v,,a,fj ay, = UyCy + 'v,,c;'

inverse transformation



The BCS state is, by construction, the quasiparticle vacuum:
cv|0) =0 Vv

Rewrite the Hamiltonian in terms of quasiparticle operators:

H =Uy+ Hyi1 + Hao + Hoz + Hyes
}¥11 ~ C+C
Hyy ~ ctet
Hieo ~ cctetet +ctetete+cetetee+ he.

Because of the normal order of the operators, the expectation value of the interacting
terms in the BCS state vanishes, and the ground-state energy:

(0|H|0) = Uy = Z [2(61, — A2 — le‘f] — G Z Uy Uy

v>0 >0

e e | 1 |
The variational problem: §(0|H|0) = 0 = ](—U() = ()
dv,,



d 0

From: v2 +u” =1 =

d

dv,

U()=0 —

DEF. the pairing gap:

... solutions:

fL,

12

|2

|
2

bO | =

dv,  Ov,

2(¢/, — Nuyv, = A(u?

1 2
G E Uy,

>0

A

& =e¢— Gv

v, O

wy, Ouy,

)

includes the self-energy correction
for a particle in a given orbital u
interacting, via the constant pairing
force, with an extra pair of nucleons.

Two equations are needed to
determine the chemical potential

A\ and the pairing gap A.



Insert the solutions for u, and v, into: A = E (T
v >()

1
Z 6, — )\)2 T AZ Gap equation

1/>()

’BIM

.. plus the particle number condition:

n — . (C:/ - A)
Z ! -\/(6’ — A)?2 + A?

For a given set of single-particle energies, particle number n, and pairing strength G, these
two coupled equations have to be solved simultaneously for the unknown quantities A and A
(solution by iteration).



Quasiparticle vacuum= One-quasiparticle state.
ground state of an even-

even nucleus.
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Population v? of pairs in single-particle levels for different ratios of the pairing strength
to the average distance between single-particle levels.



The quasiparticle Hamiltonian:

-+, +..
Hqy, = E E,(c)c, + ¢, cp)

>0

E, = e/ — \)2 + A2 quasiparticle energy
17

'I/

Hoo + Hpo = Z [2(6:, — Nuyv, — Alug, — -'1'2)] () ey + epey)

J
!

=0 from the variational condition.

The quasiparticle transformation defines the representation in which the two-particle

scattering processes across the Fermi level are absorbed in the definition of the new
basis and the reference BCS-state.

The total Hamiltonian relative to Uy:

H = Z E,,(Cj(:,, -+ C;C,—,) e H4() = H31 - H22 + h.c.
>0

\ J

!

guasiparticle residual interaction
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Theories of Nuclear Structure

microscopic

Ab initio approaches - start
from a given NN force
-GFMC

-no core shell model
-coupled cluster calculations
-unitary correlator method

Microscopic models based
on effective interactions or
effective energy-density
functionals

Mac-mic approach
-liquid drop model plus
shell corrections
-phenomenological input

phenomenological

/
AN

Large scale Shell Model
calculations

Self-consistent
mean-field models



The Nuclear Many-Body Problem

Ab initio few-body
calculations (GFMC)
No-core Shell Model

0 hw Shell Model



Self-consistent mean-field models

Mean-field approximation: the dynamics of the nuclear many-body system is
represented by independent nucleons moving in a
self-consistent potential.

Self-consistent potential: corresponds to the actual density distribution for
a given nucleus.

SCMF models approximate the exact energy-density functional with powers
and gradients of ground-state nucleon densities. The density functional is not
necessarily related to any given NN potential.

Advantages of SCMF models (over the Shell Model approach):

» global effective nuclear interactions (used for all nuclei!)
* description of arbitrarily heavy nuclei, including superheavy elements
* intuitive picture of intrinsic shapes



The General Variational Principle

< 1I;|H|\I; > -any state which makes the functional E[W]
U stationary, when |W> is allowed to vary over the
< | > whole Hilbert space, is an eigenstate of the
hamiltonian H with the eigenvalue E.

E[¥] =

-variation: < V| =< U4+ < §V|
SE[U] =0 —> < O0U|H — E|¥ >=0

- if this is satisfied for any variation = H|‘If >= El‘I/ >

Trial wave function:

* single Slater determinant = Hartree-Fock approximation

e quasi-particle vacuum = Hartree-Fock-Bogoliubov approximation

* linear combination of a finite number of Slater determinants = Shell
Model

e continuous superposition of Slater determinants = Hill-Wheeler equation



The Hartree-Fock Approximation

1. Basics of a mean-field description

The basic building block of any mean-field model is a set of single-nucleon wave functions:
{;(¥),e=1,...,Nyt}, Z=(r0,7)

...the number of single-particle wave functions N . is larger than the number of nucleons A

a; = d3rzwi(f) af
/ / ot \

Creation operator for a nucleon Creation operator for
in a single-particle state i eigenstates of position

HF approximation: the state of a nucleus is described by a Slater determinant:

@) = det {1i(7),i=1,...,A)

o |®)=0 1<i<A a;|®) =0 i>A4



2. Single-particle density matrix

pij =< i|p|lj >=< ®|a] a;|® >

...the density operator associated with the Slater determinant |®> can be expressed in
terms of the single-nucleon orbitals:

A
p= Z [V >< ;| = anWz > <

A completely antisymmetric state |®> is a Slater determinant only if the corresponding
density matrix p is a projector onto the Hilbert space spanned by occupied single-particle
orbitals:




3. Hartree-Fock equations

...the hamiltonian of the system: sum of a kinetic energy and a two-body potential:

H = Z<Z\T]y>a a; + - Z<zy\V|kl>a a aja
] zgkl

...the expectation value in a Slater determinant |® >:
Elp) =< ®[H|® >= )  <i|T|j > pji + 5 Z < ij|VIkl > pripy;

t] zgkl

defines the energy E as a functional of the single-particle density matrix p associated with the
state |© >.

2
the variational equation: 5{E[P] — tI'A(P — P)} =0
The Hartree-Fock hamiltonian: 8E[ ]
...hermitian operator acting in hz’j —P Z‘h’j >— P
the space of single-particle apji

states



...from the variational equation: [h, ,0] = hp — ph =0

Hartree-Fock equation

The solution of the Hartre-Fock equation is a single-particle basis in which both h and p are
diagonal.

hlAy >=e€,|AL > HF orbitals

h = h[p] The HF equation is non-linear!
Iterative solution:
A
1) initial guess for the HF orbitals [A, > =— p= Z Ay >< A
v=1

2) with this density matrix p construct the HF hamiltonian h

3) Diagonalize h: new set of HF orbitals ~ |A], >

Repeat steps 2) and 3) until two successive calculations give the same HF orbitals to a
desired accuracy: self-consistent HF Hamiltonian.



The Hartree-Fock-Bogoliubov Approximation

Pure Slater determinants - occupation numbers n={0,1}. This is strictly valid only for doubly
magic nuclei. All the others have partially occupied shells with a high density of almost
degenerate states that are mixed by the residual two-body interaction: nuclear pairing scheme.

1. Pairing correlations

...concept of independent quasi-particles defined by the Bogoliubov transformation:

by =) (Uimaf + Vina,)

(2

which relates single-particle states to quasiparticle states. In compact notation:

(5 )= (o) w=(v o)

— the transformation matrix is unitary.



:> The ground state of the system is given then by the condition to be the quasi-

particle vacuum:
b,|®) =0  Vn

...quasi-particle wave functions in coordinate space:

b= [ on@ ) _ ( 5 Uinthi(@) )

N@ )\ i Vinti(@)
The single-particle density:  p;; = (@]ajai\q)) = (V*VT)ij = p;’fi
The pair tensor: Kij = <(I)’ajai‘q)> = (V*UT)z’j = — Ky

The completely antisymmetric state |® > is a quasiparticle vacuum only if the associated
generalized density matrix:

satisfies the relations: RZ _



2. Hartree-Fock-Bogoliubov equations

...derived from the variational principle by using a quasiparticle vacuum as the trial wave
function.

The gp vacuum is not an eigenstate of the particle number operator - additional constraint:
the average number of particles = number of particles in the system.

< QN|® >=<®|) afa;|®>=trp=N

...minimize the expectation value of the hamiltonian:

~

H = H-uN

Z <i|T —plj>afa; + = Z < ij|V|kl > a a aag
¥ ijl

E[p, k] =< ®|H|® >= E[R]

1 OF OF
SE[p, K, K] Z T me 5 Z Or, i T By 0K

©J



Hartree-Fock hamiltonian Pairing field

OE[R)] OE[R]
hii = = h* Ly = = —A.
7 Bpji 7t Big Ok} At
1
hij =< i|T — /,L|] > -I-Z < ’I:k‘|V|jl > Plk A = 52 < ij|V|kl > Kkl
kl kl
The quasiparticle hamiltonian:| H = ( _2* _%* )

...the variational equation: 5{E[R] - tI‘A(R2 — R)} =0

I:> Hartree-Fock-Bogoliubov equation [H,R] =0

(5 A)(%) = «(%)




H="H[R| ':> the HFB equation is nonlinear. Solution by iteration.

1) initial guess for the density and pair matrices p and k

2) calculate the Hartree-Fock hamiltonian h and pairing field A

3) solve the eigenvalue HFB equation

4) from the eigenvectors evaluate the new density and pair matrices.
The trace of the density matrix will not, in general, be equal to the
number of particles in the system -> change the chemical potential

U = W+ 6 until the trace equals the desired number of particles.

5) repeat steps 2) = 4) until two successive calculations give the
same density and pair matrices to a desired accuracy.

The stationary value of the energy functional:
E=<®|H|® >= uN +tr(hp— k*"A)— < ®|V|D >

1. Quasiparticle basis ¢,, > diagonalizes the generalized one-body matrix R
2. Canonical basis J; = diagonalizes the one-body density p
3. Hartee-Fock basis - diagonalizes the mean-field Hamiltonian h



3. Symmetries and constraints

= symmetries related to the shape of the nucleus — spherical, axial quadrupole, triaxial
quadrupole, octupole

= time reversal symmetry — for even-even nonrotating nuclei. The creation of a quasiparticle
or the rotation of the nucleus breaks time-reversal symmetry.

The landscape of the energy as a function of a shape degree of freedom is explored with the
help of constraints.

The equations of motion are obtained by minimization of a Routhian:

E=(H)~ ) X{Ng)=D Xa(Qa)

q=p,n &

with a constraint on the expectation value:

(Qa) = (2]Qa|®) = Qa



Routhian (cranked A A A
EHF Hamiltonian) :> H' =H - AQ

q <: Collective
coordinate




4. The BCS approximation

...well defined only in the case of time-reversal invariance -> Kramers degeneracy

of single-particle states: €y, — €5 for time-conjugate partners gbn, d)ﬁ
The BCS approximation: forces the pairing 0 d
potential to be diagonal in the basis of the A = dT 0
eigenstates of the mean-field potential: o

dnﬁz = 5nmdnm7 hSOn = €EnPn

The pairing problem reduces to the determination of occupation amplitudes by solving the gap
equation:

(en — p) (U2 — v2) + 2dpatunv, =0

The two-component wave functions become simply:

¢’$?,U) — UnPn ﬁbszv) = UnPn



5. Local densities and currents

The full density matrix can be decomposed into four separate spin-isospin terms:

p(ror,x’'o’'1")

1
— Z{ [Poo (I‘, I") 50‘0’ + So0 (ra I‘,) ’ aa’a] 57'7"
+1
+ Z [pla(ra I") 500’ + Sla(ra rl) ’ aa’a] (T'r"r)a}
a=—1
where: Og'g = (O”|6"U) y Trir = (Tllﬂ'r)

For pure proton and neutron states only the a = 0 components of the isovector densities

contribute.
There are six local densities and currents that can be derived from the full density matrix.

We omit the second index in the densities, and with T=0 or 1:



Local densities and currents:

T=0 density: po(r) = po(r,r) = Z p(roT;roT)
aT

T=1 density: p1(r) = pi(r,r)= Z p(roT;roT) T
aoT

T=0 spin density: so(r) = so(r,r)= Z p(roT;ro'T) 0510
co'T

T=1 spi ity:

spin density Sl(r) — Sl(r, r) = Z p(I‘O'T; I‘G,T) Os'a0 T

co'T

Current: ir(r) = %(vl - V) pT(r’r,)|r=r’

Spin-current tensor: JIr(r) = %(V’ — V) ® sr(r, r')lrzr,

Kinetic density: TT(r) = V.V pT(I‘, I") r—r

Kinetic spin-density:

TT(I') = V-V'ST(r,r') ,

r=r



Choices for the effective interaction

1. MEAN-FIELD EFFECTIVE INTERACTIONS

Gogny interaction: sum of two Gaussians with space, spin and isospin exchange mixtures. In
addition, a density-dependent interaction plus a spin-orbit term.

OGogny (F12) = 3j ;€ ~(s2/)*(W; + B; Py — H; Pr — M; P, Pr)
+13 (1 = $0P0)5(1‘12) p“ ( )
+iWie (61 + 62) -k x 8(r12) k
Exchange operators: ]50 — %(1 + 61 - 6‘2) 137 = %(1 + 71 - Tz)
rig =T1—T2 k=—5(V1— V)

The Gogny interaction is used both in the mean-field and pairing channels.




Skyrme interactions

In the Skyrme Hartree-Fock approach, the total binding energy is given by the sum of the kinetic
energy, the Skyrme energy functional that models the effective interaction between nucleons, the
Coulomb energy, the pair energy, and corrections for spurious motions:

E = Eyin + /ddr gSk + Ecou + Epair — Bicorr

E : dd
The Skyrme energy functional: gSk = (g%ven - g% )
T=0,1 \ \
Density-dependent Contains only Dependence on
coefficients time-even dens. time-odd currents
/ / \
/| \
A J 72 vJ
EFN = Ch p7 + Cr° prApr + CF prrr + CoJ7 + Cp 2 pr V-JI 1
odd _ s _2 As sT
ST - CT ST + CT ST 'AST + CT sp-Tr does not contribute for

+Cf¥3 (V-ST)2 -+ C% T + szj s7-V Xjr even-even nuclei!




Single-particle hamiltonian:

The contribution from the Skyrme interaction to the single-particle Hamiltonian:

hg=U,—V-B,V — {{W,,Vo}+8,:6 —V-(6-C,)V - {{A,, V}

where: {W,,Vo} =) {Wi;,Vis;}  (g=p,n)

1]

...the local potentials are calculated from:

OF OF OF
time-even: Uq — E, Bq — E, Wq —_— E
oOF OF oFE
e odd: A = S =— (C,=_—
time Odd q 6jq7 q 5Sq, q 6Tq

The time-odd fields A, C, and S contribute to the single-particle Hamiltonian only in situations
where the intrinsic time-reversal symmetry is broken and the Kramers degeneracy of single-
particle levels is removed.



2. PAIRING CORRELATIONS

8
V. .
...pairing-energy functional: Epair = E —4q /ds'r 1— (p_(r)) pﬁ(r)

g=p,n Pe

corresponds to the density-dependent two-body zero-range local pairing force:

B
Vi A r
Ve EO(I—PJ) 1 — (pfol)) d(ry; —r2)
Volume pairing Surface pairing
pc > o Pc = Pnm

The pairing strengths V,, , are adjusted phenomenologically to reproduce the odd-even staggering of
energies in selected chains of nuclei.



Applications: ground-state properties

1. Binding Energies

Microscopic Skyrme-Hartree-Fock-Bogoliubov mass tables:

Differences between 4 | | | | | | | | |
experimental and _ I HFB-31 |
calculated masses as > i
a function of the ﬁ 21
neutron number. -y ,

S 0l
Root Mean Square 2 '
Deviation: 0.56 MeV | a2
with respect to the 3 »
2353 measured masses 2 : :
of nuclei with N and -4 | .
Z2>8. > |

0 20 40 60 ‘81%‘\1‘ 100 120 140 160

PHYSICAL REVIEW C 93, 034337 (2016)
56



single-proton energies ¢ [MeV]

single-proton energies ¢ [MeV]

Proton and neutron Nilsson diagrams of 2°*No calculated

2. Shell structure
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One-quasiparticle energies [MeV]
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Experimental and calculated

quasiparticle spectra in 24°Bk and 2>1cf.

Nucl. Phys. A 944, 388 (2015).



3. Observables of the Density Distribution

3.6 1 3.9 s ENg

A
1 3.8 4.6 -

3.4 137k S 445

T T j P T

20 24 28 32 28 32 36 40 b8 62 66 70 74 78 106 110114 118 122 126 130 134
Neutron Number N

Comparison of r.m.s. radii of the charge distributions from spherical mean-field calculations. Filled
diamonds: direct radius measurements; open diamonds: measurements of isotopic shifts.

Bender, Heenen, and Reinhard
RevsMod. Phys., Vol. 75
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Energy (MeV)

ﬁzcos(y+30)

Calculated potential energy surface of 18Pb. Spherical, oblate and prolate minima are indicated by thick
vertical black lines. Calculations are performed on a cartesian mesh. The B, parameter expresses the
elongation of the nucleus along the symmetry axis, while the y parameter relates to the degree of triaxiality in
the deformation. The y parameter is defined such that y=0 corresponds to a prolate shape and y=60 to an

oblate shape.



5. Fission barriers

1 v v 1 v 1 v I

20 G Axial quad. constraint

wll B 0 ..

Axial quadrupole +
Octupole constraints

Relaxing symmetries often

0 O decreases the barriers !

Triaxial guadrupole
-0 | constraint

-05 OO 0.5 10 ,185 20 2.9 30 3.9
2

Paths in the deformation energy landscape of 24°Pu calculated with the Skl4 force. The solid line
corresponds to axial quadrupole and octupole (reflexion asymmetric) constraints, the dashed line to
triaxial quadrupole constraints, the dotted line to axial quadrupole constraint only.

MeV)
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S

Bender, Heenen, and Reinhard
Rev. Mod. Phys., Vol. 75
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